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Abstract

The world is drowning in data. The recent explosion of web publishing, XML data,

bioinformation, scientific data, image data, geographical map data, and even email

communications has put a strain on our ability to manage the information contained

there. The influx of massive data sets with all kinds of features presents a number

of difficulties with efficient management of storage space, organization of informa-

tion, and data accessibility. A primary computing challenge in these cases is how to

compress the data but still allow them to be queried quickly. This thesis addresses

theoretical and algorithmic issues arising from these practical concerns for the prob-

lem of compressed text indexing, where we want to maintain efficient data storage

and rapid response to queries on data.

The premise of data compression comes from many real-life situations, where data

are often highly compressible. This compressibility constitutes a major opportunity

for saving space and data query latency, and is a critical bottleneck for many applica-

tions. In mobile applications, for instance, space and the power to access information

are at a premium. In a streaming environment, where new data are being generated

constantly, compression can also aid in prediction of upcoming trends. In the case of

bioinformatics, analyzing succinct representations of DNA sequences could lead to a

deeper understanding of nature, perhaps even giving hints on secondary and tertiary

structure, gene evolution, and other important topics.

We use text data as the subject of this particular study. We introduce a num-

ber of compressed data structures for compressed text indexing that enable arbitrary

searching for patterns in the provably best possible time. The methodology is distinct

in that the process of searching also encompasses decoding; therefore, the original

document is no longer needed. Together, these data structures can be used at mul-
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tiple levels of a compression-retrieval hierarchy to arrive at an overall text indexing

solution. Some structures can be used individually as well, within or beyond the

scope of text indexing. For each data structure, we provide a theoretical estimate

of its space usage and query performance on a suite of operations crucial to access

the stored data. In each case, we relate its space usage to the compressed size of

the original data and show that the supported operations function in near-optimal

or optimal time.

We also present a number of experimental results using our methodology. These

experiments validate our theoretical findings, and we establish that our methodology

is competitive with the state-of-the-art.
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Chapter 1

Introduction

The problem of data proliferation is challenging our ability to manage information. Classic

algorithms are greedy in terms of their space usage and cannot access only a tiny portion

of the data. This trend has not gone unnoticed by researchers, as evidenced by the recent

issues in data streaming [Mut03] and sublinear algorithms [Cha04]. Unlike these cases,

many problems require the entire dataset to be stored in compressed format but still need

it to be queried quickly. In fact, compression may have a more far-reaching impact than

simply storing data succinctly: “That which we can compress we can understand, and

that which we can understand we can predict,” as observed in [Aar05]. Much of what we

call “insight” or “intelligence” can be thought of as simply finding succinct representations

of sensory data [Bau04]. For instance, we are far from fully understanding the intrinsic

structure of biological sequences, and as of today, we cannot compress them well either.

Researchers have considered these issues in several algorithmic contexts, such as the

design of efficient algorithms for managing highly-compressible data structures. They

have carefully studied the exact resources needed to represent trees [BDM+05, GRR04,

MRS01a, MRS01b, MR02], graphs [Jac89a, BBK03], sets and dictionaries [BB04, BM99,

Pag01, RR03, RRR02], permutations and functions [MRRR03, MR04], and text indexing

structures [FM05, GV05, GGV04, FGGV04, Sad02b, Sad03]. The goal is to design algo-

rithms with tight space complexity s(n). The Kolmogorov complexity for representing data

provides a lower bound on the value of s(n) for each representation studied. Kolmogorov

complexity essentially defines compression in terms of the size of the smallest program that

can generate the input provided [LV97]. However, Kolmogorov complexity is undecidable

for arbitrary data, so any compression method is known to be suboptimal in this sense.1

1Extrapolating from [Aar05, Bau04], the undecidability of Kolmogorov complexity implies that

there is a computational limit on finding succinct representations for sensory data.

1
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The hope is to achieve s(n) + o(s(n)) bits, with nearly-optimal asymptotic time bounds,

i.e. O(t(n)) time, while remaining competitive with state-of-the-art (uncompressed) data

structures [Jac89a].

Providing an accurate analysis of space occupancy (up to lower-order terms) is moti-

vated by the above theoretical issues as well as the following technological issues. Space

savings can translate into faster processing (by reducing disk accesses), which results in

shorter seek times or allows data storage on faster cache levels. A recent line of research

uses the I/O computation model [Vit01] to take into account some of these issues, such as

cache-oblivious algorithms and data structures [AV88, BDFC05]. Some algorithms exploit

data compression to achieve provably better time bounds [RC93, KV98, VK96]. From an

economical standpoint, compressed data would require less media to store (such as RAM

chips in search engines or portable computing devices) or less time to transmit over regu-

lated bandwidth models (such as transmissions by cell phones).

Similar goals for analyzing time bounds are difficult to achieve due to the complexity

of modern machines, unless some simple computation model (such as one reminiscent of

the comparison model) is used. Sources of imprecision include cache hits/misses, dynamic

re-ordering of instructions to maximize instruction parallelism, disk scheduling issues, and

latency of disk head movements. Space bounds, on the other hand, are relatively easier to

predict and can often be validated experimentally. This concrete verification is an important

component of research due to technological advances that may affect an otherwise good

bound: 64-bit CPUs are on the market (increasing the pointer size or address space),

Unicode text is becoming more commonplace (requiring more than 8 bits per symbol as

in ASCII text), and XML databases are encoding more data as well (adding a non-trivial

amount of formatting data to the “real” information). We need to squeeze all this data and

provide fast access to its compressed format. For a variety of data structures, therefore, the

question remains: Can we achieve a near-optimum compression and simultaneously support

asymptotically fast queries?

In this thesis, we address this question for a number of applications focused around the

2
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problem of compressed text indexing. The goal is to develop an index for an input text T that

can efficiently search for any arbitrary substring of the text, and the index itself requires

space proportional to the size of the optimally-compressed input text T . Our work focuses

on developing both the text indexes, and sheds light on the critical components necessary

to achieve the best possible index. We also develop a number of these components, which

are meaningful results in their own right. We now briefly overview these components, and

explain how they work together.

1.1 Text Compression and Text Indexing

Our main interest is on text data. Properly addressing the text data issue also requires

efficient solutions to a number of derivative succinct indexing problems. In this context,

the tight space complexity s(n) is better expressed in terms of the entropy of the particular

text at hand. See [Sha48] for the definition of entropy and [CT91] for the relation between

entropy and Kolmogorov complexity.

We want to develop tight space bounds for text compression, i.e. storing a text in

a compressed binary format. We additionally want to design compressed text indexes to

decode any small portion of the text or search for any pattern as a substring of the text,

without decompressing the binary format entirely. In particular, we study how to obtain a

compressed representation of the text that is a self-index, namely, we desire a compressed

binary format that is also an index for the text itself.

We consider the text T as a sequence of n symbols, where each symbol is drawn from the

alphabet Σ of size σ. Since the raw text T occupies n lg σ bits of storage, T is compressible

if it can be represented in fewer than n lg σ bits.2 It is a simple fact that no encoding of T

can take fewer bits than the entropy of T , which measures how much randomness is in T .

Here, entropy is related to the size of the smallest program which generates T , according

2In this thesis, we use the notation lgc
b a = (lgb a)c = (lg a/ lg b)c to denote the cth power of the

base-b logarithm of a. If no base is specified, the implied base is 2.

3
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to the Kolmogorov complexity. So, we expect that the entropy of T is a lower bound to

the space complexity s(n) for compressed data structures that store T .

The entropy bound is ideal, but we can only quantitatively analyze an approximation

of it, namely,

nHh + M(T,Σ, h) (1.1)

in terms of bits of space. In formula (1.1), Hh ≤ lg σ is the hth-order empirical entropy

of T , which captures the dependence of symbols on their context, made up of the h adjacent

symbols in the text T . As n increases, M(T,Σ, h) denotes the number of bits used to

store the empirical probabilities for the corresponding statistical model in T : informally,

M(T,Σ, h) represents the number of bits required to store the number of occurrences of yx

as a substring of the text T , for each context x of length h and each symbol y ∈ Σ.

(These quantities are discussed formally in Sections 2.2 and 2.3.) As h increases, nHh

is non-increasing and M(T,Σ, h) is non-decreasing. Thus, carefully tuning the context

length h gives the best choice for minimizing space. An interesting problem is how to

obtain nearly optimal space bounds where s(n) is approximated by formula (1.1) for the

best choice of h. In practice, English text is often compressible by a factor of 3 or 4, and

the best choice for h is usually about 4 or 5. Lempel and Ziv have provided an encoding

such that h ≤ α lg n + O(1) (where 0 < α < 1) is sufficiently good for approximating the

entropy; Luczak and Szpankowski prove a sufficient approximation for ergodic sources when

h = O(lg n) in [LS97].

In Chapter 2, we present a unified algorithmic framework to obtain nearly optimal

space bounds for text compression and compressed text indexing, apart from lower-order

terms. In particular, we provide a tight analysis of the Burrows-Wheeler transform (bwt)

establishing a bound of nHh + M(T,Σ, h) bits Using the same framework, we also obtain

an implementation of the compressed suffix array (csa) that achieves nHh + M(T,Σ, h) +

O(n lg lg n/ lg|Σ| n) bits of space while still retaining competitive full-text indexing func-

tionality.

The novelty of the proposed framework lies in its use of the finite set model instead of

4
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the empirical probability model (as in previous work), giving us new insight into the design

and analysis of our algorithms. For example, we show that our analysis gives improved

bounds since M(T,Σ, h) ≤ min{g′h lg(n/g′h + 1),H∗
hn + lg n + g′′h}, where g′h = O(|Σ|h+1)

and g′′h = O(|Σ|h+1 lg |Σ|h+1) do not depend on the text length n, while H∗
h ≥ Hh is the

modified hth-order empirical entropy of T . We go on to describe some classes of texts for

which the above bound is nearly tight, showing that they are among the hardest to compress

with the bwt. We also examine the importance of lower-order terms, as these can dwarf any

savings achieved by high-order entropy. Moreover, we show a strong relationship between

a compressed full-text index and the succinct dictionary problem. This last consequence is

a key observation, since it neatly separates the text indexing problem into that of encoding

a series of dictionary data structures.

In Chapter 3, we also report on a new experimental analysis of high-order entropy-

compressed suffix arrays, which retains the theoretical performance of previous work and

represents an improvement in practice. Our experiments indicate that the resulting text

index offers state-of-the-art compression. In particular, we require roughly 20% of the

original text size—without requiring a separate instance of the text. We can additionally

use a simple notion to encode and decode block-sorting transforms (such as the Burrows-

Wheeler transform), achieving a compression ratio comparable to that of bzip2. We also

provide a compressed representation of suffix trees (and their associated text) in a total

space that is comparable to that of the text alone compressed with gzip.

1.2 Dictionaries and Data-Aware Measures For Set

Data

In Chapter 4, we consider the fundamental dictionary problem on set data, where the task

is to construct a data structure for representing a set S of n items out of a universe U =

{0, . . . , u−1} and supporting various queries on S. Dictionaries are used extensively in text

indexing and other applications with a text input (such as the database applications of XML
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selectivity estimation) as a building block in designing entropy-compressed data structures.

For text-based applications, dictionaries serve as a powerful black box that operate within

some entropy-aware partitioning of the data. Any improvements to a dictionary structure

would have tremendous impact on all such dependent applications.

We use a well-known data-aware measure for set data called gap to bound the space

of our data structures. We describe a novel dictionary structure that requires gap +

O(n lg(u/n)/ lg n) + O(n lg lg(u/n)) bits. Under the RAM model, our dictionary supports

membership, rank, and predecessor queries in nearly optimal time, matching the time bound

of Andersson and Thorup’s predecessor structure [AT00], while simultaneously improving

upon their space usage. We support select queries even faster in O(lg lg n) time.

Our dictionary structure uses exactly gap bits in the leading term (i.e., the constant

factor is 1) and answers queries in near-optimal time. When seen from the worst case

perspective, we present the first O(n lg(u/n))-bit dictionary structure that supports these

queries in near-optimal time under the RAM model. We also build a dictionary that

requires the same space and supports membership, select, and partial rank queries even

more quickly in O(lg lg n) time.

We show that for many (real-world) datasets, data-aware methods lead to a worthwhile

compression over combinatorial methods. To our knowledge, these are the first results that

achieve data-aware space usage and retain near-optimal time.

1.3 Dynamizing Succinct Data Structures

We present a framework in Chapter 5 to dynamize succinct data structures, to encourage

their use over non-succinct versions in a wide variety of important application areas. Our

framework can dynamize most state-of-the-art succinct data structures for dictionaries,

ordinal trees, labeled trees, and text collections. Of particular note is its direct application

to XML indexing structures that answer subpath queries [FLMM05]. Our framework focuses

on achieving information-theoretically optimal space along with near-optimal update/query

6
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bounds.

As the main part of our work, we consider the following problem central to text indexing:

Given a text T over an alphabet Σ, construct a compressed data structure answering the

queries char (i), rank s(i), and select s(i) for a symbol s ∈ Σ. Many data structures consider

these queries for static text T [GGV03, FM05, SG06, GMR06]. We build on these results

and give the best known query bounds for the dynamic version of this problem, supporting

arbitrary insertions and deletions of symbols in T .

Specifically, with an amortized update time of O(nε), any static succinct data struc-

ture D for T , taking t(n) time for queries, can be converted by our framework into a

dynamic succinct data structure that supports rank s(i), select s(i), and char (i) queries in

O(t(n) + lg lg n) time, for any constant ε > 0. When |Σ| = polylg(n), we achieve O(1)

query times. Our update/query bounds are near-optimal with respect to the lower bounds

from [PD06].

The best previously-known query times for this problem were O(lg n lg |Σ|), given

by [NM06b], although their update bounds are also O(lg n lg |Σ|). Our framework can

be easily modified to achieve similar bounds.

Nevertheless, we focus on faster query/slower update for both theoretical and practical

considerations. Theoretically speaking, our query bounds match (or nearly match) the

bounds given by fastest known static data structures. With this query bounds as the

target, our update bounds are nearly tight with respect to the applicable lower bounds

known for the partial sums problem [PD06]. Practically, our choice of faster query/slower

update is well-suited for many data structuring environments in string matching, databases

and XML indexing.

7
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Chapter 2

An Algorithmic Framework for
Compression and Text Indexing

2.1 Introduction

In this chapter, we describe a unified algorithmic framework that achieves the first nearly

optimal space bounds for both text compression and compressed text indexing. We provide

a new tight analysis of text compression based on the Burrows-Wheeler transform [BW94]

(hereafter called the bwt). We also provide a new implementation of compressed text index-

ing based on the compressed suffix array [FM05, GV05, Sad03] (hereafter called the csa).

A key point of our unified approach is the use of the finite set model instead of the empir-

ical probability model adopted in previous work, giving us new insight into the analysis.

We capture the empirical probabilities encoded in M(T,Σ, h) bits (see Formula (1.1)) by

employing a two-dimensional conceptual organization which groups contexts x from the

text by their predicted symbols y. This scheme can be seen as an alternative way to model

an arbitrary partition of the bwt. We then restructure each context accordingly, encoding

each group with an algorithm that stores t items out of a universe of size n in the informa-

tion theoretic minimum space dlg
(n

t

)
e bits (since there are

(n
t

)
subsets of t items out of n).

In Sections 2.1.1 and 2.1.2, we detail our results for text compression and text indexing,

which reach nearly optimal space bounds for both areas. The work in this chapter was a

collaborative effort with Roberto Grossi and Jeffrey Scott Vitter.

2.1.1 Text Compression

In this section, we discuss our results for text compression, which are based on the Burrows-

Wheeler transform (bwt). Simply put, the bwt rearranges the text T so that it is easily

compressed by other methods. In practice, the compressed version of this transformed text
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is quite competitive with other methods [Fen96, Fen02, FTL03]. The bwt is at the heart

of compressors based on block-sorting (such as bzip2) that outperform Lempel-Ziv-based

compressors (such as gzip). We provide a method for representing the bwt in compressed

format using well-known results from combinatorial enumeration [Knu05, Rus05] in an

unusual way, exploiting the functionality of ranking and unranking t-subsets for compressing

and decompressing the t items thus stored.1 We collect and store this information in our

new wavelet tree, a novel data structure that we use to represent the LF mapping (from

the bwt and used in the fm-index [FM05]) and the neighbor function Φ (at the heart of

the csa [GV05]). Our framework-based analysis gives a bound of nHh + M(T,Σ, h) bits

for any given h as input, thus matching Formula (1.1). The best value of h can be found

using the optimal partitioning of the bwt as given in [FGMS05], so that our bound holds

for any h (simply because Formula (1.1) cannot be smaller for the other values of h). For

comparison purposes, we give an upper bound on the number of bits needed to encode the

statistical model,

M(T,Σ, h) ≤ min
{
g′h lg(n/g′h + 1), H∗

hn + lg n + g′′h
}

, (2.1)

where g′h = O(σh+1) and g′′h = O(σh+1 lg σh+1) do not depend on the text length n.

In Formula (2.1), H∗
h ≥ Hh is the modified hth-order empirical entropy (see Section 2.2)

introduced in [Man01] to show that the bwt can be represented in at most (5 + ε)nH ∗
h +

lg n+gh bits, where ε ≈ 10−2 and gh = O(σh+1 lg σ). The latter bound is important for low-

entropy texts, since the compression ratio scales with high-order entropy; this bound cannot

be attained when replacing H∗
h by Hh. We refer the reader to [Man01] for previous literature

on the subject. In contrast, the compression ratio of Lempel-Ziv algorithm [ZL77] does not

scale for low-entropy texts: although its output is bounded by nHh +O(n lg lg n/ lg n) bits,

it cannot be smaller than 2.5nH0 bits for some strings [KM99]. Note that the bwt is a

booster for 0th-order compressors as shown in [FGMS05], where a close connection of the

1We use the term t-subset instead of the more usual k-subset terminology, because we use k to

denote the levels of our compressed suffix array (described later). A similar observation holds for

entropy Hh, which is often referred to as Hk in the literature.

9
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optimal partition of the bwt with the suffix tree [McC76] attains the best known space

bounds for the analysis of the bwt, namely, 2.5nH ∗
h +lg n+gh bits and nHh +n+lg n+gh

bits. The related compression methods do not require the knowledge of the order h and

take O(n lg σ) time for general alphabets.

Using (2.1), we can compare our analysis with the best bounds from previous work.

When compared to the additive term of O(n lg lg n/ lg n) in the analysis of the Lempel-

Ziv method in [KM99], we obtain an O(lg n) additive term for σ = O(1) and h = O(1),

giving strong evidence why the bwt is better than the Lempel-Ziv method. Indeed, since

M(T,Σ, h) ≤ g′h lg(n/g′h + 1), our bound in (1.1) becomes nHh + O(lg n) when h = O(1)

and σ = O(1), thus exponentially reducing the additive term of n of the Hh-based analysis

in [FGMS05]. In this case, our bound closes the gap in the analysis of bwt, since it

matches the lower bound of nHh + Ω(lg lg n), up to lower-order terms. The latter comes

from the lower bound of nH∗
0 + Ω(lg lg n) bits, holding for a large family of compressors

(not necessarily related to bwt), as shown in [FGMS05]; the only (reasonable) requirement

is that any such compressor must produce a codeword for the text length n when it is fed

with an input text consisting of the same symbol repeated n times. Since Hh ≤ H∗
0 , we

easily derive the lower bound of nHh + Ω(lg lg n) bits, but a lower bound of nHh + Ω(lg n)

probably exists since nH∗
0 ≥ lg n while nHh can be zero.

As for the modified hth-order empirical entropy, we show that our analysis in (1.1)

can be upper bounded by n(Hh + H∗
h) + lg n + g′′h bits using (2.1). Since Hh ≤ H∗

h, our

bound in (1.1) is strictly smaller than 2.5nH∗
h + lg n + gh bits in [FGMS05], apart from the

lower-order terms. Actually, our bound is definitively smaller in some cases. For example,

while a bound of the form nH∗
h + lg n + gh bits is not always possible [Man01], there are

an infinite number of texts for which nHh = 0 while nH∗
h 6= 0. In these cases, our bound

from (1.1) is nH∗
h + lg n + g′′h bits.

We also describe a class of non-trivial texts where our bound is nearly tight. In partic-

ular, we show that our analysis is nearly tight for any chosen positive constant 0 < δ ≤ 1,

namely, there exists an infinite family of strings such that for any n-long string in the

10
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family, its bound in Formula (1.1) satisfies n(((k − 1)/k)δHh + H∗
h) − o(nH∗

h) ≤ nHh +

M(T,Σ, h) ≤ n(δHh + H∗
h) + lg n + g′′h, where k > d1/δe is a constant. (The definition of

these families is intimately related to our analysis.) Finally, encoding and decoding take

O
(
n(nHh/ lg n + 1) + g′′h

)
time; however, as shown in [GGV04], we can use run-length en-

coding in place of subset encoding in a practical setting, reducing the time complexity to

O(n lg σ).

2.1.2 Compressed Text Indexing

In this section, we discuss our analysis with respect to text indexing based on the compressed

suffix array (csa). Text indexing data structures preprocess a text T of n symbols drawn

from an alphabet Σ such that any query pattern P of m symbols can be answered quickly

without requiring an entire scan of the text itself. We denote a substring T [i]T [i+1] · · · T [j]

of contiguous text symbols by T [i, j]. Depending on the type of query, we may want to know

if P occurs in T (occurrence or search query), how many times P occurs in T (counting

query), or the locations where P occurs in T (enumerative query). An occurrence of

pattern P at position i identifies a substring T [i, i + m − 1] equal to P . Because a text

index is a preprocessed structure, a reasonable query time should have no more than a

polylg(n) cost plus an output sensitive cost O(occ), where occ is the number of occurrences

retrieved (which is crucial for large-scale processing).

Until recently, these data structures were greedy of space and also required a separate

(original) copy of the text to be stored. Suffix trees [McC76, Ukk95, Wei73] and suffix ar-

rays [GBS92, MM93] are prominent examples. The suffix tree is a compact trie whose leaves

store each of the n suffixes contained in the text T , namely, T [1, n], T [2, n], . . . , T [n, n],

where suffix T [i, n] is uniquely identified by its starting position i. Suffix trees [McC76,

MM93] allow fast queries of substrings (or patterns) in T in O(m lg σ + occ) time, but

require at least 4n lg n bits of space, in addition to keeping the text. The suffix array SA

is another popular index structure. It maintains the permuted order of 1, 2, . . . , n that

corresponds to the locations of the suffixes of the text in lexicographically sorted order,

11
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T
[
SA[1], n

]
, T
[
SA[2], n

]
, . . . , T

[
SA[n], n

]
. Suffix arrays [GBS92, MM93] (that store the

length of the longest common prefix) are nearly as good at searching as are suffix trees.

Their time for finding occurrences is O(m + lg n + occ) time, but the space cost is at least

n lg n bits, plus the cost of keeping the text.

A new trend in the design of modern indexes for full-text searching is addressed by

the csa [GV05, Rao02, Sad03, Sad02b] and the opportunistic fm-index [FM05], the latter

making the very strong intuitive connection between the power of the bwt and suffix

arrays. They support the functionalities of suffix arrays and overcome the aforementioned

space limitations. In our framework, we implement the csa by replacing the basic t-subset

encoding with succinct dictionaries supporting constant-time rank and select queries. The

rank query returns the number of entries in the dictionary that are less than or equal to

the input entry; the select query returns the ith entry in the dictionary for the input i.

Succinct dictionaries store t keys over a bounded universe n in the information theoretically

minimum space dlg
(n

t

)
e bits, plus lower-order terms O(n lg lg n/ lg n) = o(n) [RRR02]. We

show a close relationship between compressing a full-text index with high-order entropy to

the succinct dictionary problem. Prior to the work of this chapter, the best space bound

was 5nHh + O
(
nσ+lg lg n

lg n + nεσ2σ lg σ
)

bits for the fm-index, supporting a new backward

search algorithm in O(m + occ × lg1+ε n) time for any ε > 0 [FM05]. We refer the reader

to the survey in [NM06a] for a discussion of more recent work in this area.

We obtain several tradeoffs between time and space as shown in Tables 2.1 and 2.2.

For example, Theorem 13 gives a self-index requiring nHh + O(n lg lg n/ lgσ n) bits

of space (where h + 1 ≤ α lgσ n for an arbitrary positive constant α < 1) that allows

searching for patterns of length m in O(m lg σ+occ×polylg(n)) time. Thus, using our

new analysis of the bwt, our implementation provides the first self-index reaching

the high-order empirical entropy nHh of the text with a multiplicative constant of 1;

moreover, we conjecture that g′
h lg(n/g′

h + 1) additional bits are not achievable for

text indexing. If true, this claim would imply that adding self-indexing capabilities to

a compressed text requires more space than M(T, Σ, h), the number of bits encoding

12
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bits of space lookup & lookup−1 substring conditions notes

nHh lg lgσ n + o(n lg σ) + O
(
σh(nβ + σ)

)
O(lg lgσ n) O( c

lg
σ

n + lg lgσ n) any 0 < β < 1 Thm.9

ε−1nHh + O
(

n lg lg n
lgε

σ
n + σh(nβ + σ)

)
O
(
(lgσ n)ε/1−ε lg σ

)
O
(

c
lg

σ
n + (lgσ n)ε/1−ε lg σ

)
any 0 < β < 1, 0 < ε ≤ 1/2 Thm.10

ε−1nHh + O(n) + O
(
σh(nβ + σ)

)
O
(
(lgσ n)ε/1−ε

)
O
(

c
lg

σ
n + (lgσ n)ε/1−ε

)
n = o(n lg σ) for σ = ω(1) Cor.3

nHh + O
(

n lg lg n
lg

σ
n + σh+1 lg(1 + n/σh+1)

)
O(lg2 n/ lg lg n) O(c lg σ + lg2 n/ lg lg n) any 0 < β < 1 Thm.11

Table 2.1: Trade-offs between time and space for the implementation of csa and its supported operations. (See Defini-

tion 2.) The lower-order terms in the space complexity are all o(n lg σ) bits except σh(nβ + σ) (because of M(T, Σ, h)),

which is o(n lg σ) when h + 1 ≤ α lgσ n for any arbitrary positive constant α < 1 (we fix β such that α + β < 1). In all

cases, compress requires O(n lg σ + σh(nβ + σ)) time.
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bits of space search/count time enumerative time (per item) conditions notes

ε−1nHh + O(n lg lg n
lgε

σ
n ) O

(
m

lg
σ

n + (lg n)(1+ε)/(1−ε)(lg σ)(1−3ε)/(1−ε)
)

O
(
(lg n)(1+ε)/(1−ε)(lg σ)(1−3ε)/(1−ε)

)
any 0 < ε ≤ 1/2 Thm.12

nHh + O(n lg lg n
lg

σ
n ) O(m lg σ + lg4 n/(lg2 lg n lg σ)) O(lg4 n/(lg2 lg n lg σ)) 1 > ω ≥ 2ε/(1− ε) Thm.13

ε−1nHh + O(n lg lg n
lgε

σ
n ) O( m

lg
σ

n + lgω n lg1−ε σ) O(lgω n lg1−ε σ) 0 < ε ≤ 1/3 Thm.14

Table 2.2: Trade-offs between time and space for the compressed text indexing based on the csa, under the assumption

that h + 1 ≤ α lgσ n for any arbitrary positive constant α < 1. The lower-order terms in the space complexity are all

o(n lg σ) bits. In all cases, the construction takes O(n lg σ) time and uses a temporary area of O(n lg n) bits of space.
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the empirical statistical model for the bwt. Actually, we also conjecture that the

O(n lg lg n/ lgσ n) term is the minimum additional cost for obtaining the O(m lg σ)-

time search bound. Bro Miltersen [Mil05] proved a lower bound of Ω(n lg lg n/ lg n)

bits for constant-time rank and select queries on an explicit bitvector (i.e. σ = 2).

(Other tradeoffs for the lower bounds on size are reported in [Mil05, DLO03, GM03].)

While this result does not directly imply a lower bound for text indexing, it remains as

strong evidence of the difficulty of improving the lower-order terms in our framework

since it is heavily based on rank and select queries.

As another example, consider Theorem 14, where we develop an hybrid imple-

mentation of the csa, occupying ε−1nHh + O(n lg lg n/ lgε
σ n) bits (0 < ε ≤ 1/3), so

that searching is very fast and takes O(m/ lgσ n + occ × lgω n lg1−ε σ) time (1 > ω >

2ε/(1−ε) > 0). For low-entropy text over an alphabet of size σ = O(1), we obtain the

first self-index that simultaneously exhibits sublinear size o(n) in bits and sublinear

search and counting query time o(m); reporting the occurrences takes o(lg n) time

per occurrence.

Also, due to the ambivalent nature of our wavelet tree, we can obtain an im-

plementation of the LF mapping for the fm-index as a byproduct of our method.

(See Section 2.7.3 for more details.) We obtain an O(m lgσ) search/count time by

using the backward search algorithm in [FM05] in nHh + O(n lg lg n/ lgσ n) bits. We

also get O(m) time in nHh + O(n) = nHh + o(n lg σ) bits when σ is not a constant.

This avenue has been explored in [FMMN04], showing how to get O(m) time in

nHh + O(n lg lg n/ lgσ n) bits when σ = O(polylg(n)), using a wavelet tree with a

fanout of O(lgη n) for some constant 0 < η < 1. All these results together imply that

the fm-index can be implemented with O(m) search time using nearly optimal space,

nHh + O(n lg lg n/ lgσ n) bits, when either σ = O(polylg(n)) or σ = Ω(2O(lg n/ lg lg n)).

The space is still nHh + O(n) = nHh + o(n lg σ) for the other values of σ, but we do

not know if the lower-order term O(n) can be reduced.
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2.1.3 Outline of Chapter

The rest of the chapter is organized as follows. In Section 2.2, we describe the dif-

ferences between various notions of empirical entropy and propose a new definition

based on the finite set model. In Sections 2.3–2.7, we describe our algorithmic frame-

work, showing a tighter analysis of the bwt and detailing our new wavelet tree.

In Section 2.8, we use this framework to achieve high-order entropy compression in

the csa. In Section 2.9, we apply our csa to build self-indexing data structures that

support fast searching. In Section 2.10, we give some final considerations and open

problems.

2.2 High-Order Empirical Entropy

In this section, we formulate our analysis of the space complexity in terms of the high-

order empirical entropy of a text T of n symbols drawn from alphabet Σ = {1, 2, . . . , σ}.

For ease of exposition, we “number” the symbols in alphabet Σ from 1 to σ = |Σ|,

such that the renumbered symbol y is also the yth lexicographically ordered symbol

in Σ = {1, 2, . . . , σ}. Without loss of generality, we can assume that σ ≤ n, since

we only need to consider those symbols that actually occur in T . In particular, we

discuss various notions of entropy from both an empirical probability model and a

finite set model. In Section 2.2.1, we consider classic notions of entropy according to

the empirical probability model. We describe a new definition based on the finite set

model in Section 2.2.2.

2.2.1 Empirical Probabilistic High-Order Entropy

We provide the necessary terminology for the analysis and explore empirical prob-

ability models. For each symbol y ∈ Σ, let ny be the number of its occurrences in
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text T . With symbol y, we associate its empirical probability, Prob[y] = ny/n, of

occurring in T . (Note that by definition, n =
∑

y∈Σ ny, so the empirical probabil-

ity is well defined.) Following Shannon’s definition of entropy [Sha48], the 0th-order

empirical entropy is

H0 = H0(T ) =
∑

y∈Σ

−Prob[y]× lg Prob[y]. (2.2)

Since nH0 ≤ n lg σ, expression (2.2) simply states that an efficient variable-length

coding of text T would encode each symbol y based upon its frequency in T rather

than simply using lg σ bits. The number of bits assigned for encoding an occurrence

of y would be − lg Prob[y] = lg(n/ny).

We can generalize the definition to higher-order empirical entropy, so as to capture

the dependence of symbols upon their context, made up of the h previous symbols

in the text. For a given h, we consider all possible h-symbol sequences x that appear

in the text. (They are a subset of Σh, the set of all possible h-symbol sequences over

the alphabet Σ.) We denote the number of occurrences in the text of a particular

context x by nx, with n =
∑

x∈Σh nx as before, and we let nx,y denote the number of

occurrences in the text of the concatenated sequence yx (meaning that y precedes x).2

Then, the hth-order empirical entropy is defined as

Hh = Hh(T ) =
∑

x∈Σh

∑

y∈Σ

−Prob[y, x]× lg Prob[y|x], (2.3)

where Prob[y, x] = nx,y/n represents the empirical joint probability that the symbol y

occurs in the text immediately before the context x of h symbols and Prob[y|x] =

nx,y/nx represents the empirical conditional probability that the symbol y occurs

immediately before context x, given that x occurs in the text. (We refer the interested

2The standard definition of conditional probability for text documents considers the symbol y

immediately after the sequence x. It makes no meaningful difference, since we could simply use

this definition on the reversed text as discussed in [FGMS05].
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reader to [CT91] for more details on conditional entropy.) Setting h = 0, we obtain H0

as defined previously. In words, expression (2.3) is similar to (2.2), except that we

partition the probability space further according to contexts of length h in order to

capture statistically significant patterns from the text.

An important observation to note is that Hh+1 ≤ Hh ≤ lg σ for any integer h ≥ 0.

Hence, expression (2.3) states that a better variable-length coding of text T would

encode each symbol y based upon the joint and conditional empirical frequency for

any context x of y.

Manzini [Man01] gives an equivalent definition of (2.3) in terms of H0. For any

given context x, let wx be the concatenation of the symbols y that appear in the

text immediately before context x. We denote its length by |wx| and its 0th-order

empirical entropy by H0(wx), thus defining Hh as

Hh =
1

n

∑

x∈Σh

|wx|H0(wx). (2.4)

One potential difficulty with the definition of Hh is that the inner terms of the

summation in (2.4) could equal 0 (or an arbitrarily small constant), which can be

misleading when considering the encoding length of a text T . (One relatively trivial

case is when the text contains n equal symbols, as no symbol needs to be “predicted”.)

Manzini introduced modified high-order empirical entropy H∗
h to address this point

and capture the constraint that the encoding of the text must contain at least lg n

bits for coding its length n. Using a modified

H∗
0 = H∗

0 (T ) = max{H0, (1 + blg nc)/n} (2.5)

to make the change, he writes

Ĥh =
1

n

∑

x∈Σh

|wx|H∗
0(wx). (2.6)

Unfortunately, Ĥh+1 ≤ Ĥh does not necessarily hold in (2.6) as it did for Hh. To

solve this problem, let Ph be a prefix cover, namely, a set of substrings having length
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at most h such that every string from Σh has a unique prefix in Ph. Manzini then

defines the modified hth-order empirical entropy as

H∗
h = H∗

h(T ) =
1

n
min
Ph

∑

x∈Ph

|wx|H∗
0 (wx). (2.7)

so that H∗
h+1 ≤ H∗

h does hold in (2.7). Other immediate consequences of this

encoding-motivated entropy measure are that H∗
h ≥ Hh and nH∗

h ≥ lg n, but nHh

can be a small constant. Let the optimal prefix cover P ∗
h be the prefix cover that min-

imizes H∗
h in (2.7). Thus, Equation (2.7) can be equivalently stated by the expression

H∗
h = 1

n

∑

x∈P ∗

h
|wx|H∗

0 (wx).
3

The empirical probabilities used in the definition of the high-order empirical en-

tropy can be obtained from the number of occurrences nx,y, where
∑

x∈P ∗

h ,y∈Σ nx,y = n.

Indeed, ny =
∑

x∈P ∗

h
nx,y and nx =

∑

y∈Σ nx,y. This discussion motivates the following

definition, which will guide us through our high-order entropy analysis.

Definition 1. The empirical statistical model for a text T drawn from an alphabet Σ

for contexts of length up to h is composed of two parts stored using M(T, Σ, h) bits:

i. The partition of Σh induced by the contexts of the prefix cover P ∗
h .

ii. The sequence of non-negative integers, nx,1, nx,2, . . . , nx,σ, where x ∈ P ∗
h . (Re-

call that nx,y is the number of occurrences of yx as a substring of T .)

We denote the number of bits used to store the information in parts (i)–(ii) by

M(T, Σ, h), as n increases.

2.2.2 Finite Set High-Order Entropy

We provide a new definition of high-order empirical entropy H ′
h, based on the finite

set model rather than on conditional probabilities. We use this definition to avoid

3A minor technical note: h now refers to the length of the longest substring in P ∗

h , since no larger

value of h can yield a more succinct entropy measure.
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dealing with empirical probabilities explicitly. We show that our new definition is

Hh − O(|P ∗
h | lg n) ≤ H ′

h ≤ Hh ≤ H∗
h, so that we can provide bounds in terms of H ′

h

in our analysis.

For ease of exposition, we “number” the lexicographically ordered contexts x as

1 ≤ x ≤ σh. Let the multinomial coefficient
(

n
m1,m2,...,mp

)
= n!

m1!m2!···mp!
represent the

number of partitions of n items into p subsets of size m1, m2, . . . , mp. In this chapter,

we define 0! = 1. (Note that n = m1 +m2 + · · ·+mp.) When m1 = t and m2 = n− t,

we get precisely the binomial coefficient
(

n
t

)
. We define

H ′
0 = H ′

0(T ) =
1

n
lg

(
n

n1, n2, . . . , nσ

)

, (2.8)

which counts the number of possible partitions of n items into σ unique buckets, i.e.

the alphabet size. We use the optimal prefix cover P ∗
h in (2.7) to define our alternative

high-order empirical entropy 4

H ′
h = H ′

h(T ) =
1

n

∑

x∈P ∗

h

lg

(
nx

nx,1, nx,2, . . . , nx,σ

)

. (2.9)

For example, consider the text T = mississippi#. Fixing h = 1 and taking

P ∗
h = Σh, we have that all contexts are of length 1. For context x = i occurring

ni = 4 times in T , we have the symbols y = m, p, and s appearing ni,m = ni,p = 1

and ni,s = 2 times in T . Thus, the contribution of context x = i to nH ′
1(T ) is

lg
(

4
1,1,2

)
= lg 12 bits. In the next theorem, we show that our formulation of finite set

entropy is smaller than the usual definition of empirical probabilistic entropy.

Theorem 1. For any given text T and context length h ≥ 0, we have H ′
h ≤ Hh.

Proof. It suffices to show that nH ′
0 ≤ nH0 for all alphabets Σ, since we know that

lg
(

nx

nx,1,nx,2,...,nx,σ

)
≤ |wx|H0(wx). Setting P ∗

h = Σh in (2.9) and applying Manzini’s

definition of entropy in (2.4) naturally leads to the claim.

4Actually, it can be defined for any prefix cover Ph, including Ph = Σh.
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The bound nH ′
0 ≤ nH0 trivially holds when σ = 1. We first prove this bound for

an alphabet Σ of σ = 2 symbols. Let t and n− t denote the number of occurrences of

the two symbols in T . We want to show that nH ′
0 = lg

(
n
t

)
≤ nH0 = t lg(n/t) + (n−

t) lg(n/(n− t)) by (2.8). The claim is true by inspection when n ≤ 4 or t = 0, 1, n−1.

Let n > 4 and 2 ≤ t ≤ n− 2. We apply Stirling’s double inequality [Fel68] to obtain

nn
√

2πn

en−1/(12n+1)
< n! <

nn
√

2πn

en−1/12n
. (2.10)

Taking logarithms and focusing on the right-hand side of (2.10), we see that

lg n! < n lg
n

e
+

1

2
lg n +

1

12n
lg e + lg

√
2π. (2.11)

Similarly to (2.11), we take the left-hand side of (2.10), and obtain

lg n! > n lg
n

e
+

1

2
lg n +

1

12n + 1
lg e + lg

√
2π. (2.12)

Applying (2.11) and (2.12) to lg
(

n
t

)
= lg(n!)− lg(t!)− lg((n− t)!), we have

nH ′
0 = lg

(
n

t

)

< nH0−
1

2
lg

t(n− t)

n
−lg e

[
1

12t + 1
+

1

12(n− t) + 1
− 1

12n

]

−lg
√

2π.

(2.13)

Since t(n− t) ≥ n and 1/(12t + 1) + 1/(12(n− t) + 1) ≥ 1/(12n) by our assumptions

on n and t, it follows that nH ′
0 ≤ nH0, proving the result when σ = 2.

Next, we show the claimed bound for the general alphabet (σ ≥ 2 and h = 0)

and by using induction on the alphabet size (with the base case σ = 2 as detailed

before). We write

lg

(
n

n1, n2, . . . , nσ

)

= lg

[(
n− nσ

n1, n2, . . . , nσ−1

)

×
(

n

nσ

)]

. (2.14)

We use induction for the right-hand side of (2.14) to get

lg

(
n− nσ

n1, n2, . . . , nσ−1

)

≤
σ−1∑

y=1

ny lg
n− nσ

ny
, (2.15)
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lg

(
n

nσ

)

≤ nσ lg
n

nσ
+ (n− nσ) lg

n

n− nσ
. (2.16)

Summing (2.15) and (2.16), we obtain
∑σ

y=1 ny lg n
ny = nH0, thus proving the claim

for any alphabet size σ.

The above discussion now justifies the use of H ′
h in our later analysis, but we

continue to state bounds in terms of Hh as it represents more standard notation.

The key point to understand is that we can derive equations in terms of multinomial

coefficients without worrying about the empirical probability of symbols appearing

in the text T .

2.3 The Unified Algorithmic Framework:

Tighter Analysis for the BWT

The characterization of the high-order empirical entropy in terms of the multinomial

coefficients given in Section 2.2.2 drives our analysis in a unified framework for text

compression and compressed text indexing. In this section, we begin with a simple,

yet nearly optimal analysis of the Burrows-Wheeler transform (bwt). Section 2.3.1

formally defines the bwt and highlights its connection to (compressed) suffix arrays.

Our key partitioning scheme is described in Section 2.3.2; it serves as the critical

foundation in achieving a high-order entropy analysis for the bwt. Sections 2.4.2–

2.4.3 motivate and develop our multi-use wavelet tree data structure, which serves

as a flexible tool in both compression and text indexing. We finish the upper bound

analysis of the bwt in Section 2.5, and the lower bound in Section 2.6.
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2.3.1 The BWT and (Compressed) Suffix Arrays

We now give a short description of the bwt in order to explain its salient features.

Consider the text T = mississippi# in the example shown in Table 2.3, where

i < m < p < s < # and # is an end-of-text symbol. The bwt forms a conceptual

matrix Q whose rows are the cyclic (forward) shifts of the text in sorted order and

stores the last column L = ssmp#pissiii written as a contiguous string. Moreover,

the last column L is an invertible permutation of the symbols in T . In particular,

LF (i) = j in Table 2.3 indicates for any symbol L[i], the corresponding position j

in F where L[i] appears. For instance, LF (3) = 5 since L[3] = m occurs in position 5

of F ; LF (8) = 10 since L[8] = s occurs in position 10 of F (as the third s among the

four appearing consecutively in F ).

Using L and LF , we can recreate the text T in reverse order by starting at the last

position n (corresponding to #mississippi), writing its value from F , and following

the LF function to the next value of F . Continuing the example from before, we

follow the pointers from LF (n): LF (12) = 4, F [4] = i; LF (4) = 6, F [6] = p;

LF (6) = 7, F [7] = p; and so on. In other words, the LF function gives the position

in F of the preceding symbol from the original text T . Thus one could store L and

recreate T , since we can obtain F by sorting L and the LF function can be derived

by inspection. Note that L is compressible using 0th-order compressors, boosting

them to attain high-order entropy [FGMS05]. In the following, we connect the bwt

with L.

Clearly, the bwt is related to suffix sorting, since the comparison of any two

circular shifts must stop when the end marker # is encountered. The corresponding

suffix array is a simple way to store the sorted suffixes. The suffix array SA for a

text T maintains the permuted order of 1, 2, . . . , n that corresponds to the locations of

the suffixes of the text in lexicographically sorted order, T
[
SA[1], n

]
, T
[
SA[2], n

]
, . . . ,
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T
[
SA[n], n

]
. By dropping the symbols after # in the sorted matrix Q (column ‘Sorted’

in Table 2.3), we obtain the sequence of sorted suffixes represented by SA (column

‘Suffix Array ’ in Table 2.3). In the example above, SA[6] = 10 because the sixth

largest lexicographically ordered suffix, pi#, begins at position 10 in the original text.

We make the connection between the bwt and SA more concrete by describing

the neighbor function Φ, introduced to represent the csa in [GV05]. In particular,

the Φ function indicates, for any position i in SA, the corresponding position j in SA

such that SA[j] = SA[i]+1 (a sort of suffix link similar to that of suffix trees [McC76]).

For example in Table 2.3, Φ(6) = 4 since SA[6] = 10 and SA[4] = 11. As can be

seen from Table 2.3, LF (Φ(i)) = Φ(LF (i)) = i for 1 ≤ i ≤ n; thus, these functions

are inverses of each other. Hence, the Φ function is also an invertible representation

of the bwt. (The Φ function can also be thought of as the FL mapping while the

LF mapping can be thought of as the encoding of inverse suffix links.) Encoding

the Φ function is no harder than encoding LF . In the following, we make use of this

connection to achieve a high-order empirical entropy analysis of the bwt.

The Φ function can be implemented by using Σ lists as shown in [GV05]. Given

a symbol y ∈ Σ, the list y is the set of positions from the suffix array such that

for any position p in list y, T [SA[p]] is preceded by y.5 In words, it collects the

positions where y occurs in the text based upon information from the suffix array.

The fundamental property of these Σ lists is that each list is an increasing series of

positions. For instance, list i from our example is 〈7, 10, 11, 12〉 since for each entry,

T [SA[p]] is preceded by an i. The concatenation of the lists y for y = 1, 2, . . . , σ

gives Φ. Going on in the example, list m is 〈3〉; list p is 〈4, 6〉; list s is 〈1, 2, 8, 9〉, and

list # is 〈5〉. Their concatenation yields the Φ function shown in Table 2.3. Thus,

the value of Φ(i) is just the ith nonempty entry in the concatenation of the lists, and

belongs to some list y.

5Specifically, y = T [SA[p]− 1] for SA[p] > 1, and y = T [n] when SA[p] = 1.
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We can reconstruct SA and the bwt by using Φ and the position f of the last

suffix SA[f ] = n, where Φ(f) is the position in SA containing the first suffix. Con-

tinuing the example from before (where f = 12) we can recreate SA by iterating Φ

as Φ(f) = 5, SA[5] = 1; Φ(5) = 3, SA[3] = 2; Φ(3) = 11, SA[11] = 3, and so on. In

general, we compute Φ(f), Φ(Φ(f)), . . . , so that the rank j in SA for the ith suffix

in T (1 ≤ i, j ≤ n) is obtained as j = Φ(i)(f) by i iterations of Φ on f . However, this

process not only recovers the values of SA, but also the corresponding lists y (which

provide the symbols for the bwt by the definition of Σ lists). In particular, symbol y

occurs in the jth position of the bwt, where j = Φ(i)(f). In the example, symbol

y = # is in position Φ(f) = 5 of the bwt because the fth entry in Φ is in list #;

symbol y = m is in position Φ(5) = 3 because the fifth entry is in list m; symbol y = i

is in position Φ(3) = 11, and so on.

2.3.2 Context-Based Partitioning of the BWT

We now show our major result for this section; we describe a nearly optimal analysis

of the compressibility of the Burrows-Wheeler transform with respect to high-order

empirical entropy, exploiting the relationship between the bwt and suffix arrays

illustrated in Section 2.3.1.

Let P ∗
h be the optimal prefix cover as defined in Section 2.2, and let nx,y be

the corresponding values in Equation (2.9), where x ∈ P ∗
h and y ∈ Σ (see also

Definition 1). We denote by |P ∗
h | ≤ σh the number of contexts in P ∗

h . The following

theorem formalizes the bounds that we anticipated in Formulas (1.1) and (2.1) for

our analysis.

Theorem 2 (Space-Optimal Burrows-Wheeler Transform). The Burrows-

Wheeler transform for a text T of n symbols drawn from an alphabet Σ can be com-
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pressed using

nHh + M(T, Σ, h) (1.1)

bits for the best choice of context length h and prefix cover P ∗
h , where the number of

bits required for encoding the empirical statistical model behind P ∗
h (see Definition 1)

is

M(T, Σ, h) ≤ min {g′
h lg(1 + n/g′

h), H∗
hn + lg n + g′′

h} , (2.1)

where g′
h = O(σh+1) and g′′

h = O(σh+1 lg σh+1) do not depend on the text length n.

We devote the rest of Section 2.3 and 2.5 to the proof of Theorem 2. We describe

our analysis for an arbitrary prefix cover Ph, so it also holds also for the optimal prefix

cover P ∗
h as in Equation (2.9). Since every string in Σh has a unique prefix in Ph, it

follows that Ph induces a partition of the suffixes stored in the suffix array SA (or the

corresponding circular shifts of T ). In particular, the suffixes starting with a given

context x ∈ Ph occupy contiguous positions in SA. In the example of Table 2.3, the

positions 1, . . . , 4 in SA corresponds to the suffixes starting with context x = i.

Our basic idea is to apply context partitioning to the Σ lists discussed in Sec-

tion 2.3.1. We implement our idea by partitioning each list y further into sub-

lists 〈x, y〉 by contexts x ∈ Ph. Intuitively, sublist 〈x, y〉 stores the suffixes in SA

that start with x and are preceded by y. Thus, each item p in sublist 〈x, y〉 indicates

that T
[
SA[p] − 1, SA[p] + h

]
= yx. For context length h = 1, if we continue the

example in Table 2.3, we break the Σ lists by context (in lexicographical order i, m,

p, s, and #, and numbered from 1 up to |Ph|). The list for y = i is 〈7, 10, 11, 12〉,
and is broken into sublist 〈7〉 for context x = p, sublist 〈10, 11〉 for context x = s,

and sublist 〈12〉 for x = #. We recall that the fundamental property of Σ lists is that

each list is an increasing series of positions. Thus, each sublist 〈x, y〉 we have created

is also increasing and contains nx,y entries, where nx,y is defined as in Equation (2.9)

and Definition 1.
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We build a conceptual 2-dimensional table T that follows Definition 1; see Ta-

ble 2.4 for an instance of T on our running example (for h = 1). (Each row x

implicitly represents the suffixes in SA that start with context x and the columns y

are the symbols “predicted” in each context.) The contexts x ∈ Ph correspond to the

rows and the Σ lists y are stored in the columns x. The columns of T are partitioned

by row according to the contexts. Our table T has some nice properties if we consider

its rows and columns as follows:

• We can implement the Φ function by accessing the sublists in T in column

major order, as discussed in Section 2.3.1.

• We have a strong relationship with the high-order empirical entropy in Equa-

tion (2.9) and the statistical empirical model of Definition 1, if we encode these

sublists in row major order.

For any context x ∈ Ph, if we encode the sublists in row x using nearly lg
(

nx

nx,1,nx,2,...,nx,σ

)

bits, we automatically achieve the hth-order empirical entropy when summing over

all the contexts as required in Equation (2.9). For example, context x = i should be

represented with nearly lg
(

4
1,1,2

)
bits, since two sublists contain one entry each and

one sublist contains two entries. The empirical statistical model should record the

partition induced by Ph and which sublists are empty, and should encode the lengths

of the nine nonempty sublists in Table 2.4, using M(T, Σ, h) bits.

The crucial observation to make is that all entries in the row corresponding to a

given context x create a contiguous sequence of positions. For instance, along the

first row of Table 2.4 for x = i, there are four entries that are in the range 1 . . . 4.

Similarly, row x = s contains the four entries in the range 8 . . . 11; row s should

be encoded with lg
(

4
2,2

)
bits. We represent this range as an interval [1, 4] with the

offset #x = 7. We call this representation a normalization, which subtracts the value

of #x from each entry p of the sublists 〈x, y〉 for y ∈ Σ. In words, we normalize the
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sublists in Table 2.4 by renumbering each element based on its order within its context

and obtain the context information shown in Table 2.5. Here, nx is the number of

elements in each context x, and #x represents the partial sum of all prior entries;

that is, #x =
∑

x′<x nx′

. (Note that the values of nx and #x are easily computed

from the set of sublist lengths nx,y.) For example, the first entry in sublist 〈s, i〉, 10,

is written as 3 in Table 2.5, since it is the third element in context s. We can recreate

entry 10 from #x by adding #s = 7 to 3. As a result, each sublist 〈x, y〉 is a subset

of the range implicitly represented by interval [1, nx] with the offset #x. We exploit

this organization to encode the bwt.

Encoding: We run the boosting algorithm from [FGMS05] on the bwt to find

the optimal value of context order h and the optimal prefix cover P ∗
h using the cost of

nH ′
h+M(T, Σ, h) according to Equation (2.9). (Recall that H ′

h ≤ Hh by Theorem 1.)

Once we know h and set Ph = P ∗
h , we can cleanly separate the contexts and encode

the Φ function as described in our table T . Thus, we follow the two steps below,

storing the following components of T :

1. We encode the empirical statistical model given in Definition 1.

2. For each context x ∈ Ph, we separately encode the sublists 〈x, y〉 for y ∈ Σ to

capture high-order entropy. Each of these sublists is a subset of the integers in

the range [1, nx] with offset #x. These sublists form a partition of the integers

in the interval [1, nx].

The storage for step 1 is M(T, Σ, h), the number of bits required for encoding

the model (see Definition 1). The storage required for step 2 should use nearly

lg
(

nx

nx,1,nx,2,...,nx,σ

)
bits per context x, and should not exceed a total of nHh bits plus

lower-order terms, once we determine P ∗
h , as stated in Theorem 2.

Decoding: We retrieve the empirical statistical model encoded in step 1 above,

which allows us to infer the number of rows and columns of our table T , and which
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sublists are nonempty and their lengths. (Note that the values of n, nx and #x can

be obtained from these lengths.) Next, we retrieve the sublists encoded in step 2 since

we know their lengths. At this point, we have recovered the content of T , allowing

us to implement the Φ function with the columns of T as discussed before. Given Φ,

we can decode bwt as described at the end of Section 2.3.1.

We will complete the proof of Theorem 2 in Sections 2.4 and 2.5.

2.4 Encoding Sublists in High-Order Entropy

At the end of Section 2.3.2, we built a partitioning scheme that considers each con-

text x ∈ Ph independently. In this section, we focus on the problem of encoding the

sublists 〈x, y〉 for y ∈ Σ (i.e., step 2 of encoding). As a reminder, these sublists form

a partition of the integers in the range [1, nx] with offset #x. Moreover, since #x

can be easily inferred using the information from the empirical statistical model in

Definition 1, we can recreate the original positions stored in the sublists as usual.

We will encode sublists one context at a time. In other words, we encode the

sublists 〈x, 1〉, 〈x, 2〉, . . . , 〈x, σ〉 at once. One way to do this encodes each context x

by encoding the string wx (from Section 2.2.1), which consists of the symbols y that

precede x, concatenated together in bwt order. To encode wx, we can use is a quasi-

arithmetic coder from [HV94] (Theorem 1), requiring lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ 2 bits of

space.

Lemma 1 (Quasi-Arithmetic Coder [HV94]). Suppose we know the values of nx

and nx,1, nx,2, . . . , nx,σ for each context x. We can encode all contexts using one quasi-

arithmetic coder for each context x taking just nHh + O(σh) bits of space. Decoding

any context requires O(nx) operations on integers of size O(σ).

In the rest of this section, we detail an alternative method of encoding each
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context x, motivated by applications to text indexing. We begin by encoding each

sublist independently, and then evaluate the redundancy of such methods. In partic-

ular, Section 2.4.3 describes an important data structure to text indexing, the wavelet

tree.

2.4.1 Individually Encoded Sublists

In this section, we consider individually encoding each sublist 〈x, y〉 in context x.

Since the positions in each sublist are always increasing, we can represent a sub-

list 〈x, y〉 as a subset S of t items drawn from a universe of size n′. In terms of

our notation for sublist 〈x, y〉, t = nx,y and n′ = nx. It will also be useful to

view the subset S as an implicit bitvector B of length n′: If S contains the ele-

ments 1 ≤ s1 < s2 < · · · < st ≤ n′, the sith entry in the bitvector is 1, for 1 ≤ i ≤ t

and the remaining n′ − t bits are 0.

In this section, we will describe two methods: the first uses t-subset encoding

from [Knu05, Rus05]; the second uses a quasi-arithmetic coder on the bitvector B.

We will use t-subsets and this quasi-arithmetic coding scheme heavily over the next

few sections; these methods will later be improved in Section 2.4.4.

Encoding Sublists Using t-subset Encoding

One method to encode S is to use t-subset encoding from [Knu05, Rus05], which

requires the information-theoretic minimum of dlg
(

n′

t

)
e bits. Each t-subset can be

encoded or decoded with O(n′) operations on large integers. By “large”, we mean

integers of size ω(lg n) bits. All the t-subsets are enumerated in some canonical order

(say, lexicographic order) and the rth subset in this order is encoded by the value r

written in binary, which requires dlg
(

n′

t

)
e bits. We will use the following canonical

ordering for our subsets: the largest index value r refers to the subset S where the
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first t positions in the implicit bitvector B are all 1.

We now describe an algorithm to take a value r and generate the subset S of t

items out of a universe of size n′ that r represents. We call this procedure unranking

the value r. Our algorithm will generate the implicit bitvector B of length n′; each

bit position B[i] is initialized to 0.

function unrank(B, r, n, t) {
if (t = 0) return B;

for (i = 1 to n)

if (r >
(

n−i
t

)
)

B[i]← 1;

r ← r −
(

n−i
t

)
;

t← t− 1;

}

The unrank function operates in O(n′) time, but uses operations on large integers

of size ω(lg n) bits. To perform expanded operations, we simply compute B and use

brute-force methods to answer queries. The “ranking” algorithm that reverses this

process is straightforward.

We highlight the functions rank and select as two advanced operations of par-

ticular interest, since they are often used in our remaining data structures. For a

bitvector B of size n′, the function rank1(B, i) returns the number of 1s in B up to

(and including) position i. The function select1(B, i) returns the position of the ith 1

in B. We can also define rank0 and select0 in terms of the 0s in B.

When we have t-subsets, we can support rank and select by unranking the index

value r into its implicit bitvector B, and then performing a brute-force linear walk

to return the correct answer.6 We summarize these results into the following lemma.

6Time bounds are not the issue at this stage; we address these concerns in Sections 2.4.4 and 2.7.1.
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Lemma 2 (t-subset Encoding). Let the subset S consist of t items drawn from a

universe of size n, where we already know t and n (and do not need to encode them).

Then, we can use t-subset encoding to represent S using lg
(

n
t

)
+ O(1) bits of space

and can be encoded or decoded using O(n) operations on large integers, i.e., integers

of size ω(lg n) bits.

Encoding Sublists Using Quasi-Arithmetic Encoding

As we saw in Section 2.4.1, using t-subset encoding to represent a subset S with t

items drawn from a universe of size n′ requires O(n) operations on large integers. To

avoid the large integer computations, we can use a quasi-arithmetic coder [HV94] to

encode or decode the implicit bitvector B. The coder will sequentially encode the

positions of B, encoding whether each bit is a 0 or a 1. At any step of the encoder,

the probability of the next bit being a 1 is t/n′ (for the current values of t and n′);

the probability of the next bit being a 0 is 1 − t/n′. We summarize this scheme in

the following lemma.

Lemma 3 (Quasi-Arithmetic Subset Encoding). Let the subset S consist of t

items drawn from a universe of size n, where we already know t and n (and do not

need to encode them). Let B be the implicit bitvector related to S. Then, we can use

a quasi-arithmetic coder to represent S (by encoding B) using lg
(

n
t

)
+ O(1) bits of

space and can be encoded or decoded using O(n) operations on small integers.

To support rank and select, we will use a brute-force method once we have

recovered B. We reduce the encoding and decoding time for storing a subset S from

O(n′) time to O(t) time in Section 2.4.4, where t represents the number of items in

subset S (or equivalently, the number of 1s in B).
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2.4.2 The Space Redundancy of Encoding Multiple Sublists

In this section, we revisit encoding each sublist 〈x, y〉 independently of the others.

One (simple) method would be to encode each sublist 〈x, y〉 as a subset of t = nx,y

items out of a universe of n′ = nx items using t-subset encoding or quasi-arithmetic

coding, described in Section 2.4.1. To encode and decode sublist 〈x, y〉, we can use

subset rank and unrank primitives (respectively) on a sequence r of dlg
(

nx

nx,y

)
e bits,

or encode or decode the implicit bitvector B related to sublist 〈x, y〉.

Unfortunately, despite the fact that t-subset encoding (and quasi-arithmetic cod-

ing) is locally optimal for sublist 〈x, y〉 does not imply that it is globally optimal

for encoding all the sublists together. In fact, summing the size of subset encodings

for all the sublists shows that the total space adds an O(n) term to the entropy

bound nHh! This finding is given in the following lemma. First, we briefly define

some useful notation. Let tx be the number of nonempty sublists contained in a given

context x and, without loss of generality, let the number of entries in the nonempty

sublists be nx,1, nx,2, . . . , nx,tx, where
∑

1≤y≤tx nx,y = nx.

Lemma 4. Given context x, the following relation holds,

∑

1≤y≤tx

lg

(
nx

nx,y

)

= lg

(
nx

nx,1, nx,2, . . . , nx,tx

)

+ O(nx). (2.17)

Proof. When tx = 2,
∑

1≤y≤tx lg
(

nx

nx,y

)
= lg

(
nx

nx,1,nx,2,...,nx,tx

)
and the lemma is trivially

proved. Thus, let tx > 2, so that the following holds.

∑

1≤y≤tx

lg

(
nx

nx,y

)

= lg

[(
1

nx,1!nx,2! . . . nx,tx!

)
(nx!)t

x

(nx − nx,1)! (nx − nx,2)! . . . (nx − nx,tx)!

]

≤ lg

[
1

nx,1!nx,2! . . . nx,tx!
(nx)(n

x)

]

= lg

[
1

nx,1!nx,2! . . . nx,tx!

]

+ nx lg nx

Since lg
(

nx

nx,1,nx,2,...,nx,tx

)
= lg

[
nx!

nx,1!nx,2! ...nx,tx !

]
and lg nx! ≤ nx lg nx − nx lg e +

1/2 lg nx + 1/12n lg e + lg
√

2π by Stirling’s inequality [Fel68], the claim is proved.
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The additional term of O(nx) in Equation (2.17) is tight in several cases; for example,

when tx = nx > 2 and each nx,y = 1.

The apparent paradox implied by Equation (2.17) can be resolved by realizing

that each subset encoding only represents the entries of one particular sublist; that is,

there is a separate subset encoding for each symbol y in context x. In the multinomial

coefficient of Equations (2.9) and (2.17), all the sublists are encoded together as

a multiset. Thus, it is more expensive to have a subset encoding of each sublist

individually rather than having a single encoding for the entire context. In Lemma 4,

the O(nx) additional bits account for the extra cost incurred by encoding, for each

sublist 〈x, y〉, not only the positions of wx where y appears, but also the positions

where it does not appear. When summed over all n entries in all sublists and all

contexts, this term gives an O(n) contribution to the total space bound.

To avoid this excess encoding cost, we perform a scaling of the universe. For con-

text x, we apply the scaling of the universe as follows. When we encode sublist 〈x, y〉,

we only encode its positions in terms of positions not used by sublists 〈x, y ′〉 for

1 ≤ y′ < y. (These positions are those corresponding to the remaining 0s in the

resulting bitvector.) In this way, we iterate the scaling to the sublists:

1. We represent sublist 〈x, 1〉 using nx,1-subset encoding in a universe of size nx,

using dlg
(

nx

nx,1

)
e bits.

2. For y = 2, 3, . . . , tx, we represent sublist 〈x, y〉 using nx,y-subset encoding in a

scaled universe of size n′ = nx −∑y−1
y′=1 nx,y′

, with dlg
(

n′

nx,y

)
e bits.

We give an example using Table 2.5 for context x = i. Here, sublist 〈x, m〉 contains

the third position in the interval [1, 4] = {1, 2, 3, 4}; the corresponding bitvector 0010

is encoded in dlg
(
4
1

)
e bits. When we encode sublist 〈x, p〉, we only encode its positions

in terms of positions not used by sublist 〈x, m〉. In other words, we are encoding

which of the remaining positions {1, 2, 4} (corresponding to the 0s in the bitvector
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for sublist 〈x, m〉) contain the symbol p. In this case, entry 4 in sublist 〈x, p〉 sublist

corresponds to the third remaining position in {1, 2, 4} (out of three items in the

scaled universe). The resulting bitvector 001, is encoded in dlg
(
3
1

)
e bits. The only

remaining positions now are {1, 2}, corresponding to the two remaining 0s in the

scaled universe. To encode sublist 〈x, s〉, we only encode those positions not used

by sublists 〈x, m〉 and 〈x, p〉. Sublist 〈x, s〉 contains the remaining available positions

and we implicitly encode the bitvector 11 encoded in dlg
(
2
2

)
e = 0 bits of space. The

total number of bits for context x is dlg
(
4
1

)
e + dlg

(
3
1

)
e + dlg

(
2
2

)
e < lg

(
4

1,1,2

)
+ 3 as

required.

To recover the 2nd position in the 〈i, s〉 sublist, we have to find the position j of

the 2nd non-position in the the 〈i, p〉 sublist (i.e. the position j of the 2nd 0 in its

corresponding bitvector). For this example, we can see that j = 2. Then we have to

find the position of the 2nd non-position in the 〈i, m〉 sublist, and so on, cascading

the query until an answer is reached. Finding the right position in the bitvectors uses

a rank or select query (which we use more when we discuss text indexing).

Note that the last sublist, 〈x, tx〉, is encoded using dlg
(

nx,tx

nx,tx

)
e = 0 bits. We

introduce the notion of depth of a context x, which measures the maximum number

of sublists in context x that must be examined to recover the entries of any sublist

of x. As we shall see later, the depth is related to decompression time; in the above

scheme, the depth is tx. The lemma below captures the time and space required for

our incremental representation scheme.

Lemma 5 (Incremental Representation of Sublists). Using the incremental

representation of sublists by scaling the universe, we can encode the tx nonempty

sublists for each context x in fewer than lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ tx bits, so that the depth

is tx.

Proof. We show that the information theoretically minimum space required to encode
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all sublists in context x is

⌈

lg

(
nx

nx,1

)⌉

+

⌈

lg

(
nx − nx,1

nx,2

)⌉

+

⌈

lg

(
nx − nx,1 − nx,2

nx,3

)⌉

+ · · ·+
⌈

lg

(
nx,tx

nx,tx

)⌉

< lg

[(
nx

nx,1

)(
nx − nx,1

nx,2

)(
nx − nx,1 − nx,2

nx,3

)

· · ·
(

nx,tx

nx,tx

)]

+ tx

= lg

[
nx!

nx,1! nx,2! · · · nx,tx!

]

+ tx = lg

(
nx

nx,1, nx,2, . . . , nx,tx

)

+ tx.

We can replace tx by σ in the multinomial coefficient of the above formula because

the empty sublists do not contribute. The depth of the above approach is sequential

in terms of tx, the number of nonempty sublists within x. Thus, the depth is tx,

since we potentially have to backtrack through each nonempty sublist to recover the

entries of the last sublist in the context.

p s

# i m

 ipssm#pissii

 psspss

 pss#pss  imiii

100010010011

0001000 01000

011011

Figure 2.1: An example wavelet tree.

2.4.3 The Wavelet Tree

As we saw in Section 2.4.2, the linear representation of sublists in Lemma 5 for

context x may requires up to tx queries on nonempty sublists to decode an answer.

We instead provide the wavelet tree data structure, which is of independent interest,

that reduces the number of queries on nonempty contexts to just lg tx ≤ lg σ. A
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wavelet tree is a binary tree structure that reduces the compression of a string from

alphabet Σ to the compression of σ binary strings. We now describe the wavelet tree

data structure for any string T of length n drawn from an alphabet Σ.

Our wavelet tree data structure is a complete binary tree with σ leaves, one for

each symbol appearing in T . For each internal node u of this binary tree, we associate

two vectors of the same length: a text vector Tu composed of symbols drawn from Σ,

and bitvector Bu. At the root node r, Tr and Br are both of length n. At the root,

we set Tr = T . Let ΣL be the lexicographically smallest dσ/2e symbols present in T ,

and ΣR be the lexicographically largest bσ/2c symbols present in T . Then, we set

Br[i] = 0, if Tr[i] ∈ ΣL, and Br[i] = 1 otherwise.

We recurse this process on the n0 positions containing a symbol in ΣL for the left

subtree of r, and on the n1 positions containing a symbol in ΣR for the right subtree

of r. The text vector for left child rl is the concatenation of the symbols j such that

Br[j] = 0. The right child is processed similarly. The wavelet tree data structure

only stores Bu for each node; it stores it in some compressed form, such as t-subset

encoding (described in Section 2.4.1).

To explain our wavelet tree data structure more clearly, we will refer to the exam-

ple in Figure 2.1, built on the bwt of the string mississippi#. Here, each internal

node u consists of the two vectors Tu and Bu. (We have drawn the leaves here for

clarity, though they are not needed in the wavelet tree.) Suppose we wanted to know

which symbol appears in text position 9 (which is an s in this example).‘ We observe

that Br[9] = 0, which tells us that the correct symbol is contained in ΣL = {p, s, #}.
Furthermore, since the 9th position of Br is the sixth 0, we know that our answer

corresponds to the 6th position on the left child c1. (Computing this information re-

quires a rank query, which we will describe in detail in Section 2.7.2, when we want

fast access. For now, we explicitly compute it using t-subsets or a quasi-arithmetic

coder in a brute-force way, as described in Section 2.4.1.) We proceed to search in the
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6th position. Bc1[6] = 0 which means the correct symbol is contained in ΣL = {p, s},

so we again go to the left subchild c2, searching for the 5th position there. Here, we

find that Bc2 [5] = 1, which leads us to the leaf representing s, which we return as

the answer.

The key observation is to note that each of the tx − 1 internal nodes represents

elements relative to its subtrees. Rather than the linear relative encoding of sub-

lists we had in Section 2.4.2, we use a tree structure to reduce the dependency on

previously encoded information. In particular, to decode any particular sublist in a

wavelet tree, a query would only need to access O(lg tx) internal nodes in a balanced

wavelet tree. In some sense, the earlier approach corresponds to a completely skewed

wavelet tree, as opposed to the balanced structure now. Recovering the entries of

any sublist 〈x, y〉 proceeds exactly as in Section 2.4.2, except that we start from the

leaf corresponding to sublist 〈x, y〉 and examine only the subsets in its ancestors.

Figure 2.2: A wavelet tree for context i in our example.

Interestingly, any shape of the wavelet tree gives the same upper bounds on space;

the only aspect that changes from an altered shape is the number of queries required.

We give a short example for context i on our continuing example in Figure 2.2. We

group sublists 〈i, m〉 and 〈i, p〉 together, thus obtaining positions 〈3, 4〉 for them. For

this grouping, the corresponding bitvector would be 1100, represented with dlg
(
4
2

)
e
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bits. Then, the 〈i, s〉 list would be represented as before, with dlg
(
2
2

)
e bits. We need

a further subset encoding to distinguish between 〈i, m〉 and 〈i, p〉, but on a scaled

universe with bitvectors 01 and 1, respectively, using dlg
(
2
1

)
e and dlg

(
1
1

)
e bits. The

total space is still bounded as before, namely, dlg
(
4
2

)
e+dlg

(
2
2

)
e+dlg

(
2
1

)
e+dlg

(
1
1

)
e <

lg
(

4
1,1,2

)
+ 3, since the terms of the form dlg

(
k
k

)
e = 0 do not contribute. With this

intuition firmly in mind, we now detail the general lemma and its proof.

Lemma 6 (Wavelet Tree Compression). Suppose we know the values of nx and

nx,1, nx,2, . . . , nx,σ. Using a wavelet tree for each context x, we can encode the tx

nonempty sublists for context x in fewer than lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ tx bits, so that the

depth is O(lg tx).

Proof. We analyze the space required in terms of the contribution of each internal

node’s t-subset encoding. We prove that this cost is the logarithm of the multinomial

coefficient in Equation (2.9) for the high-order empirical entropy.7 Note that the

leaves of the wavelet tree do not contribute to the cost since they generate terms

of the form dlg
(

nx,y

nx,y

)
e = 0 in the calculations for the number of required bits. By

induction, it is simple to verify that the space required among all the tx − 1 internal

7In some sense, we are calculating the space requirements for each sublist 〈x, y〉, propagated over

the entire tree. For instance, in the example above, 〈x, y〉 is implicitly stored in each node of

its root-to-leaf path. We could analyze it this way and show that the two notions are the same,

though we defer the argument in the interest of brevity.
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nodes is

lg

(
nx,1 + nx,2

nx,2

)

+ lg

(
nx,3 + nx,4

nx,4

)

+ · · ·+ lg

(
nx,tx−1 + nx,tx

nx,tx

)

+ lg

(
nx,1 + · · ·+ nx,4

nx,3 + nx,4

)

+ lg

(
nx,5 + · · ·+ nx,8

nx,7 + nx,8

)

+ · · ·+ lg

(
nx,tx−3 + · · ·+ nx,tx

nx,tx−1 + nx,tx

)

...

+ lg

(
nx,1 + · · ·+ nx,tx

nx,1 + · · ·+ nx,tx/2

)

= lg

(
nx

nx,1, nx,2, . . . , nx,tx

)

= lg

(
nx

nx,1, nx,2, . . . , nx,σ

)

.

Hence, each wavelet tree encodes a particular context in precisely the high-order

empirical entropy, which is what we wanted in Equation (2.9). As in the proof of

Lemma 5, the rounding due to the ceilings adds further tx bits to the above bound.

Lemma 6 is a key result for many applications, such as text indexing and range

searching. One of its more subtle contributions is in achieving a near-optimal 0th-

order compressor using a series of optimally-stored succinct dictionaries. The con-

nection between these two concepts is a recurring theme in state-of-the-art bwt com-

pression. The wavelet tree serves as a natural way to express the 0th-order entropy

of a string with alphabet Σ using several strings with a binary alphabet.

The advantage of using the wavelet tree for text indexing will be clear in the rest

of the chapter, where we use the Φ function described in Section 2.3.1. In Section 2.7,

we will replace the t-subset encodings with fully indexable dictionaries [RRR02] inside

the nodes of the wavelet tree. We will exploit its organization for compressed text

indexing, as we detail in Sections 2.8 and 2.9.

One problem with our current implementation of the wavelet tree is its use of

subset encoding using t-subsets or quasi-arithmetic coders, requiring O(n) operations.

To solve this problem, we introduce our subset encoder in Section 2.4.4, which is

a data structure of independent interest. It will replace the subset encodings the

wavelet tree, without adding any additional space.
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2.4.4 Subset Encoding With Small Integers

In this section, we describe a technique for subset encoding, storing a set S of t items

out of a universe of size n such that it can be encoded or decoded using O(t) operations

on small integers. This goal is an improvement over Lemma 3, which requires O(n)

such operations. We assume that each of the n elements of the universe appears

equally likely as an element of the set S. This assumption is not a debilitating one;

in fact, the sublists that we store in the previous sections use the same assumption.

As we described in Section 2.4, we can think of a t-subset as a succinct way to store

an implicit bitvector. We could encode this bitvector using arithmetic (or quasi-

arithmetic) coding using Lemma 1, but encoding/decoding would still require O(n)

operations.

Another approach is to encode the gaps between the items s1, s2, . . . , st that ap-

pear in the set S. (The ith gap is formally si − si−1, where s0 = 1.) To encode the

items, we associate a probability distribution for the different gap values, and encode

each gap according to its probability using any of a number of techniques (say, for

instance, the quasi-arithmetic coder from [HV94]). Using this method, the items are

decoded sequentially using O(t) operations on small integers of size O(lg n) bits.

The gaps are encoded sequentially. For this section, we redefine t to be the number

of items left to encode out of a remaining universe of size n. In other words, the values

of n and t will scale as we sequentially encode gaps. (As described in [Vit84], this

scaling definition of n and t will not be a problem.) Let X be the random variable

that determines the length of the next gap value to be encoded. Note that the range

of X is the set of integers in the interval 1 ≤ x ≤ n − t. We will restrict gaps to a

length at most n/t and aggregate the probabilities of larger gaps into a single escape

gap. If we need to encode an escape gap of length g > n/t, we reset n = n − g − 1

and continue processing. Hence, the range for X is 1 ≤ x ≤ n/t.
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One approach is to encode the gap X using the exact discrete probabilities f(x).

The probability distribution function (pdf) for f(x) is

f(x) =







α1
t
n

(n−x−1)t−1

(n−1)t−1 if 1 ≤ x < n/t;

α2
(n−n/t−2)t

nt if x = n/t,

where we use the notation ab to denote the falling power a(a − 1) . . . (a − b + 1) =

a!/(a− b)!. The constants α1, α2 are normalization factors so that f(x) sums up to 1.

The probability for x = n/t includes the sum of all probabilities for x > n/t. Both

the expected value and the standard deviation of X are roughly n/t, which is, as

expected, the average gap length. We could use this distribution to encode gaps in

the quasi-arithmetic coder [HV94]; however, computing f(x) will require large integer

computations.

To avoid these computations, we are willing to use a (continuous) approximation

of f(x) to encode the gaps, though they still are occur with probability f(x). Using

an approximate distribution will incur some additional encoding overhead, which we

will analyze later in this section. In particular, we will approximate f(x) with two

probability estimates g1(x) and g2(x) from [Vit84] that are easy to compute using

built-in logarithm functions. In the rest of this section, we will assume the use of

b-bit arithmetic, where b is an appropriately large constant multiple of lg n, such that

exponential and logarithm functions are correct to b bits. Then, the absolute and

relative error of computing a constant number of such functions can be bounded by

O(1/nc) for some constant c. Furthermore, the quasi-arithmetic coder we will use

requires at most O(1/n) extra bits of storage per gap stored [HV94]. Thus, we focus

on the final source of error, the approximation itself.

Our technique will use a quasi-arithmetic coder that will encode each gap us-

ing g1(x) or g2(x) instead of f(x). To use these correctly, we need two further

properties from each approximation function:
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• Given a gap x, we need to determine in O(1) time the endpoints of an interval

whose length approximates f(x). To account for this goal, each of our approx-

imation functions will be continuous. Then, for a probability function g(x), we

can compute the endpoints G(x) and G(x − 1), where G(x) =
∫

g(x) is the

cumulative distribution function.

• Each interval G(x) − G(x − 1) must be of length at least O(1/nc) for some

constant c, so that we can represent it using c lg n bits.

The first property will be obvious for our choices for g(x); we will prove the second

property for each case.

Our two approximation functions are g1(x) and g2(x). We will use g1(x) to encode

gaps when t ≤ √n, and g2(x) to encode gaps when t >
√

n. If t > n/2, we reverse

the role of 0s and 1s (i.e., encode gaps of 1s), set t = n − t, and proceed as above.

(Obviously, if t = 0, we do not generate any more gaps.) We will use these probability

estimates in the quasi-arithmetic coder to encode the gaps, alternating between g1

and g2 and maintaining t as necessary to operate within the above constraints. We

do not have to remember which estimate was used to encode each item or when we

complemented the set S (which could take a lot of space to encode), since it can be

easily determined during the encoding or decoding process.

Finally, we must analyze how many extra bits we will take to encode the gap X

using g1(x) or g2(x) rather than f(x). We define g1(x) as

g1(x) =







β1
t
n

(
1− x

n

)t−1
if 1 ≤ x < n/t;

β2e
−1 if x = n/t,

where β1 and β2 are normalization factors so that g1(x) sums up to 1. The random

variable X1 with probability density g1(x) has the beta distribution, scaled to the

universe [1..n] with parameters a = 1 and b = t. Notice that X1 can be generated
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quickly with only one uniform or exponential random variable [Vit84]. We similarly

define g2(x) as

g2(x) =







β3

(
1− t−1

n−1

)x
ln
(
1− t−1

n−1

)
if 1 ≤ x < n/t;

β4e
−1 if x = n/t,

where β3 and β4 are normalization factors so that g2(x) sums up to 1. The random

variable X2 with probability density g2(x) has the exponential distribution. Here,

X2 can be generated quickly with only one uniform or exponential random vari-

able [Vit84].

We now show that the probability of any event is at least Ω(1/nc), for some

constant c. This will allow us to use a quasi-arithmetic coder that makes use of a

word size of roughly c lg n bits.

Lemma 7. The approximation functions g1(x) and g2(x) are at least Ω(1/nc) for

any given gap x.

Proof. We show the result for g1(x) first; it suffices to show the result for the case

when g1(x) is minimized, namely when x = n/t. We write

g1(n/t) =
t

(n− n/t)

(

1− 1

t

)t

.

As t → ∞, this becomes (1/(n − n/t))(1/e) = O(1/nc), which can be represented

using c lg n bits of space. For smaller t, g1(n/t) is strictly larger than the limit, since

(1− 1/t) < 1. (In the degenerate case where t = 1, we handle the case separately.)

A similar analysis applies for g2(x) as well. It again suffices to show the result

when g(x) is minimized; this happens when x = n/t. We write

g2(n/t) =
(1− (t− 1)/(n− 1))n/t

ln(1− (t− 1)/(n− 1))n/t
.

Since (n− 1)/(t− 1) ≤ n/t, we can easily see that this case is similar to the previous

case, thus proving the lemma.
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Using a g1(x) and g2(x) that can be represented using only c lg n bits, we can

encode and decode the set S using O(t) operations on small integers. To quickly

arrive at the endpoints within the unit interval corresponding to a particular gap x,

we can use the cumulative distribution function for these pdfs.

However, we still have the problem that we may spend additional bits to encode

each gap, since our probabilities are only estimates for the pdf f(x). We address this

point in the following lemma, and show that the worst-case difference between the

encodings is quite small.

Lemma 8. Suppose each of the t items of subset S is drawn from [1..n]. The extra

bits needed to encode all gaps using the probability estimates g1 when t ≤ √n and g2

when t >
√

n instead of f , is at most O(1) bits using an arithmetic coder.

Proof. We look at the worst case where we encode a gap X = x using the probability

estimate g1(x) or g2(x) rather than f(x). First, we look at the scenario for g1(x). The

extra bits needed to encode any gap using g1(x) is | lg(f(x))− lg(G1(x)−G1(x−1))|.

Since g1(x) is a decreasing function, we can upper-bound the second lg-term with

g1(x − 1) and lower bound it by g1(x). We will now show both bounds, thus giving

us the result we want. For the upper bound, we write

lg(f(x)/g1(x− 1)) ≤ lg

(
n− x− 1

(n− 1)(1− (x− 1)/n)

)t−1

= lg

(

1 +
1− n− x

n2 − xn + x− 1

)t−1

.

Let y = (1 − n − x)/(n2 − xn + x − 1). Since 0 ≤ y < 1, we can see that the extra

bits we require are lg(f(x)/g1(x)) < (t− 1)(lg e)[y− y2/2], since ln(1+ y) < y− y2/2

for all |y| < 1. The worst-case ratio of f(x)/g1(x) occurs when x = n/t. Substituting

and using simple algebra, we see that we need an additional O(t/n) bits per item,

or O(t2/n) bits for all t items. (For the special case where t = 1, we encode it using
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O(1) extra bits, but this happens only once.) We use g1(x) when t ≤ √n, so this

contributes at most O(1) bits for all t gaps.

Now we lower bound the extra bits needed to encode any gap using g1(x). We

write

lg(f(x)/g1(x)) ≥ lg

(
n− x− t + 1

(n− t + 1)(1− x/n)

)t−1

= lg

(

1 +
x(t− 1)

n2 + n− nx− nt + x− tx

)t−1

.

The worst-case ratio of f(x)/g2(x) occurs when x = n/t. Substituting and using

simple algebra, we require at most O(t/n) extra bits per item. We only use g1 when

t ≤ √n, so this contributes at most O(1) bits for all t gaps.

A similar separation and analysis also applies to the overhead for g2(x), thus

proving the lemma.

Putting these results together, we arrive at the following theorem, which describes

our subset-encoding scheme.

Theorem 3 (Subset Encoding With Small Integers). Suppose each of the t

items of subset S is drawn from the universe [1..n], where we already know t and

n (and do not need to encode them). Then, there exists an encoding of subset S

that requires lg
(

n
t

)
+ O(1) bits of space and can be encoded or decoded using O(t)

operations on small integers.

2.5 Encoding the Empirical Statistical Model

In this section, we will provide an analysis of the encoding length of the empirical

statistical model, thus finishing the proof of Theorem 2. Our scheme was divided into

two components: the encoding of a series of small disjoint subtexts (or sublists), one

for each context x, and the encoding of the length of each subtext, together with the
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statistics of each subtext. We did not analyze the cost required to store this empirical

statistical information. We briefly recap now:

• For each context x, the storage for step 2 uses fewer than lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ tx

bits by Lemma 1 and 6. We use Equation (2.9) and Theorem 1 to bound the

above term by nH ′
h + |P ∗

h |σ for all contexts x ∈ P ∗
h in the worst case. Since

|P ∗
h | ≤ σh, we bound the space required to store the bwt by nHh + σh+1 bits.

• To decode the succinct dictionaries in step 2, we need to know the number

of symbols of each type stored in each subtext (sublist) for context x. Col-

lectively, this information maintains the empirical statistical model that al-

low us to achieve hth order entropy with our scheme. We call its encoding

length M(T, Σ, h) (in bits), and we are interested in discovering just how suc-

cinctly this information can be stored. Thus, the storage for step 1 is M(T, Σ, h)

bits.8

Our storage of the bwt requires nHh +σh+1 +M(T, Σ, h) bits, and bounding the

quantity M(T, Σ, h) may help in understanding the compressible nature of the bwt.

We will devote the rest of this section to developing two bounds for the storage of

empirical statistical model. One benefit of pursuing bounds in this framework is that

it simplifies the burden of analysis: namely, it translates the overhead costs of the

bwt into the cost for encoding the integer lengths nx,y.

2.5.1 Definitions and a Simple Bound

In this section, we describe a simple encoding for the empirical statistical model,

which takes M(T, Σ, h) bits to encode. Recall from Definition 1 in Section 2.2.1 that

the empirical statistical model encodes two items: the partition of Σh induced by

the optimal prefix cover P ∗
h , and the sequence of lengths nx,y of the sublists. The

8In this section, we will show that M(T, Σ, h) ≥ σh+1.
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partition is easily stored using a bitvector of length σh (or a subset encoding of the

partition using
⌈
lg
(

σh

|P ∗

h |

)⌉
≤ σh bits). To store the sequence of lengths nx,y, we simply

store the concatenation the gamma codes for each length nx,y and bound its length.

We briefly review Elias’ gamma and delta codes [Eli75] before detailing the proof.

The gamma code for a positive integer ` represents ` in two parts: the first en-

codes 1 + blg `c in unary, followed by the value of ` − 2blg `c encoded in binary, for

a total of 1 + 2blg `c bits. For example, the gamma codes for ` = 1, 2, 3, 4, 5, . . .

are 1, 01 0, 01 1, 001 00, 001 01, . . ., respectively. The delta code requires fewer bits

asymptotically by encoding 1 + blg `c via the gamma code rather than in unary. For

example, the delta codes for ` = 1, 2, 3, 4, 5, . . . are 1, 010 0, 010 1, 011 00, 011 01, . . .,

and require 1 + blg `c + 2blg lg 2`c bits. Now, we describe a simple upper bound on

encoding the empirical statistical model.

Lemma 9. The empirical statistical model for a text T drawn from an alphabet Σ can

be encoded using at most M(T, Σ, h) = O
(
σh+1 lg(1 + n/σh+1)

)
bits of space, where

h is the context length.

Proof. In this encoding, we represent the lengths using the gamma code. We ob-

tain a bitvector Z by concatenating the gamma codes for nx,1, nx,2, . . . , nx,σ for

x = 1, 2, . . . , |P ∗
h |. The bitvector Z contains O(

∑

x∈P ∗

h ,y∈Σ lg nx,y) bits; this space

is maximized when all lengths nx,y are equal to Θ(n/(|P ∗
h | × σ) + 1) by Jensen’s in-

equality [CT91]. Since |P ∗
h | ≤ σh, we bound the total space by O

(
(|P ∗

h | × σ) lg
(
1 +

n/(|P ∗
h | × σ)

))
= O

(
σh+1 lg(1 + n/σh+1)

)
bits. We do not need to encode n as it can

be recovered from the sum of the sublists lengths.

The result of Lemma 9 is interesting, but it carries a dependence on n, unlike the

bounds in related work, which are related only to σ and h [FGMS05]. In the next

section, we show an alternate analysis that remedies this problem and relates the

encoding costs to the modified entropy nH∗
h, as defined in Section 2.2.1.
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2.5.2 Nearly Tight Upper Bound on M(T, Σ, h)

In this section, we describe a nearly tight upper bound for encoding the empirical

statistical model. As we described in Section 2.5.1, we can easily store the partition

of Σh induced by the optimal prefix cover P ∗
h using at most σh bits. We provide a

new analysis for storing the sequence of lengths nx,y in Theorem 4.

Theorem 4. The empirical statistical model for a text T drawn from an alphabet Σ

requires at most M(T, Σ, h) ≤ nH∗
h + lg n + O

(
σh+1 lg σh+1

)
bits of space.

The results of Theorem 4 highlight a remarkable property of the Burrows-Wheeler

Transform, namely that maintaining the statistics of the text requires more space

than the actual encoding of the information.

To prove Theorem 4, we have to encode the sublist lengths nx,1, nx,2, . . . , nx,σ,

where x = 1, 2, . . . , |P ∗
h | and

∑

x∈P ∗

h ,y∈Σ nx,y = n. We use the following encoding

scheme for each context x:

• If context x contains a single nonempty sublist y, we use σ bits to mark the

yth sublist as nonempty. Then, we store the length nx,y = nx.

• If context x contains two or more nonempty sublists, we again use σ bits to

mark the nonempty sublists. To describe the rest of the method, let n′
1 = nx

and n′
j = nx −∑j−1

i=1 nx,i be a scaled universe where j ≥ 2. We use σ bits for

context x, one bit per sublist. The bit for sublist y is 1 if and only if nx,y > n′
y/2;

in this case, we set ty = n′
y − nx,y. Otherwise, we set the bit for sublist y to 0

and set ty = nx,y. Notice that ty ≤ n′
y/2 in both cases. Now, we encode t using

its delta code. Given n′
y and ty, we can recover the value of nx,y as expected.

Lemma 10. We can encode the sublist lengths nx,1, nx,2, . . . , nx,σ for any context x

with two or more nonempty sublists using at most γnxH∗
0 (wx) + O(σ) bits, where

0 < γ < 1/2 is a constant.
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Proof. Our scheme requires 2σ bits to store auxiliary information. Now we bound the

total size of encoding the values t1, t2, . . . , tσ using the delta code for each nonempty

sublist. Our approach is to amortize the cost of writing the delta code of ty with the

encoding of its associated sublist y. We introduce some terminology to clarify the

proof. For any arbitrarily fixed constant γ with 0 < γ < 1/2, let tγ > 0 be constants

such that for any integer t > tγ , lg t + 2 lg lg(2t) + 1 < γ(2t− lg t− 1).

Then, for nonempty sublists y with ty ≤ tγ , the delta code for ty will take

O(lg tγ) = O(1) bits of space. Summing these costs for all such sublists, we would

require at most O(σ lg tγ) = O(σ) bits for context x.

For nonempty sublists y with ty > tγ , we use at most γ(2ty − lg ty − 1) bits to

write the delta code of ty using the observation above.

Now, we will use the fact that ty ≤ n′
y/2 for each sublist y in our scheme to bound

the encoding length of sublist y, and then amortize accordingly. In general, for any

1 < t < n/2, lg
(

n
t

)
≥ lg

(
2t
t

)
≥ lg(22t/2t) = 2t − lg t − 1. Since each sublist y with

ty > tγ satisfies this condition by the construction of our scheme, we can bound the

delta code of ty by γ lg
(

n′

y

ty

)
bits. Summing over all such sublists for context x, we

would require at most γ lg
(

nx

nx,1,nx,2,...,nx,σ

)
+σ = γnxH∗

0 (wx)+σ bits using the analysis

from Section 2.4.2, thus proving the lemma.

The above scheme requires us to store the length nx of each context x, since

the sum of the ty values we store may be less than nx. (For the case with a single

nonempty context, nx is the size of the only sublist.) For example, suppose for some

context x, nx = 20, nx,1 = 11, nx,2 = 3, nx,3 = 5, nx,4 = 1. According to our scheme,

we would store the ty values 9, 3, 1, and 1, which sum up to 14 < 20. To determine

the value of nx,1, we must therefore compute nx − t; thus, we must know the value

of nx.

The storage of nx is a subtle but important point, and it is a key component in
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understanding the lower bound on encoding length for the bwt, which we discuss

more in Section 2.6. In Lemma 11, we describe a technique to store the sequence of

lengths nx for x = 1, 2, . . . , |P ∗
h | succinctly.

Lemma 11. The sequence of lengths nx for x = 1, 2, . . . , |P ∗
h | can be stored using

∑

x∈P ∗

h

lg nx + lg n + O(σh+1 lg σh+1)

bits of space.

Proof. For each context x with nx entries, we encode its length nx in binary using

b(x) = blg nxc+1 bits. These b(x) bits do not permit a decoding of nx by themselves,

since they are not prefix codes. We describe how to fix this problem. We permute

the contexts x so that they are sorted by their b(x) values. Now, contexts requiring

the same number of bits b(x) to store their lengths are contiguous. In other words,

we know that for any two consecutive contexts x and x′ in the sorted order, either

b(x) = b(x′) or b(x) < b(x′). What remains is the storage of the positions where

b(x) < b(x′). We store this information using |P ∗
h | bits.

To remember which lengths b(x) actually occur, we observe that the number of

distinct lengths is at most lg n + 1, since 1 ≤ b(x) ≤ lg n + 1. We store a bitvector of

length lg n+1 bits to keep track of this information. Finally, we store the permutation

to restore the original order of the contexts using O(lg |P ∗
h |!) = O(σh+1 lg σh+1) bits,

thus proving the lemma.

The above lemma allows us to store the length of each context x in lg nx bits,

plus some small additional costs. We can bound the space of our encoding scheme

with the following lemma.

Lemma 12. The empirical statistical model for a text T drawn from alphabet Σ

requires at most (1 + γ)nH∗
h + lg n + O(σh+1 lg σh+1) for all contexts x, where 0 <

γ < 1/2 is a constant.
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Proof. Using the definition of modified hth-order empirical entropy in Equation (2.7),

we bound the first term in Lemma 11 by
∑

x∈P ∗

h
lg nx ≤ nH∗

h. According to our

scheme, storing the length nx along with σ bits is sufficient to encode any context x

with a single nonempty sublist. For the remaining contexts, we apply Lemma 10 to

achieve the desired result.

We can further improve our bound by amortizing the cost of storing the length nx

for context x with the encoding of its sublists. The technique is reminiscent of the

one we used in Lemma 10. We change our encoding scheme as follows.

• If context x contains a single nonempty sublist y, we use σ bits to mark the

yth sublist as nonempty. Then, we store the length nx,y = nx.

• If context x contains two or more nonempty sublists, we use the scheme below.

• Let tγ be defined as in Lemma 10. For any arbitrarily fixed constant γ with

0 < γ < 1/2, let nγ > 0 be a constant such that for any integer n > nγ and

t > tγ with t ≤ n/2,
(

n
t

)
≥ n(n−1)...(n−d1/γe)

(d1/γe+1)!
> nd1/γe.

• Instead of encoding nx,1 as the first sublist length for context x, we use σ bits

to indicate that we encode nx,yb first, where tb = min{nx,yb, nx− nx,yb} satisfies

the condition
(

nx

tb

)
> (nx)γ−1

. If no such yb exists, encode nx,1 as before.

Lemma 13. We can encode the sublist lengths nx,1, nx,2, . . . , nx,σ along with the con-

text length nx for any context x with two or more nonempty sublists using at most

nxH∗
0 (wx) + O(σ) bits.

Proof. The cost for encoding the sublist lengths is analyzed using Lemma 10. We

focus on bounding the cost for lg nx. If any sublist yb satisfies the constraint in our

scheme, we know that lg nx < γ lg
(

nx

tb

)
, which is the same upper bound on the number

of bits required to encode tb. Thus, encoding both nx,yb and nx will take 2γ lg
(

nx

tb

)
+

O(σ) bits of space. The encoding size for the rest of the new sequence remains the
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same as we observed in Section 2.4.2, thus we require at most 2γnxH∗
0 (wx) + O(σ)

bits. Since γ < 1/2, this shows the bound for contexts x that satisfy the constraint.

If no sublist satisfied the constraint, then we know that each ti ≤ tγ(1 ≤ i ≤ σ)

so the delta code for each ti takes O(lg tγ) = O(1) bits, which take at most O(σ)

bits overall. Then, the lg nx bits for encoding nx can be bounded by nxH∗
0 (wx) as in

Lemma 12, since nxH∗
0 (wx) ≥ lg nx. This case will contribute at most nxH∗

0 (wx) +

O(σ) bits to the bound, thus proving the bound.

Combining Lemma 13 with our scheme for encoding the singleton context, we

prove Theorem 4.

2.6 Nearly Tight Lower Bounds for the BWT

Manzini conjectures that the bwt cannot be compressed to just nH∗
h + lg n + gh bits

of space, where gh = O(σh+1 lg σ). However, in Section 2.5.2, we provide an analysis

that gives an upper bound of n(Hh +H∗
h)+lg n+g′′

h bits, where g′′
h = O(σh+1 lg σh+1).

Since there are an infinite number of texts where nHh = 0 but nH∗
h 6= 0, our bound

is nHh +M(T, Σ, h) ≤ nH∗
h +lg n+g′′

h in these cases, matching Manzini’s conjectured

lower bound (but not for all texts).

The bwt has been analyzed extensively since its original introduction in 1994,

especially in the information-theory community [Ris84, WMF94, EVKV02]. These

results apply to a wide range of statistical models for generating a text T , including

high-order Markov sources, tree sources, and finite-state machine (FSM) sources. In

a text indexing setting, recent theoretical results [Man01, FGMS05, KLV06] have

shed light on the success of the bwt and present some limits on its compressibility.

Within the text indexing framework, we will explore other classes of texts that help

establish a non-trivial lower bound on the compressibility of the bwt. Surprisingly,
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the encoding of the bwt requires an amount of space very close to our encoding length

for the upper bound. In particular, we will prove the following theorem, which shows

that our upper bound analysis is nearly tight.

Theorem 5. For any chosen positive constant δ ≤ 1 and fixed positive integer k =

O(polylg(n)) > d1/δe, there exists an infinite family of texts such that for any texts of

length n in the family, its bound in Formula (1.1) satisfies the following two relations:

nH∗
h +

(
k − 1

k

)

δnHh −O(poly(kd)) ≤ nHh + M(T, Σ, h) (2.18)

and

nHh + M(T, Σ, h) ≤ nH∗
h + δnHh + lg n + g′′

h. (2.19)

When δ > 1, we use Formula (2.1) as the upper bound for (2.19). To prove

Inequality (2.19), we give a tighter analysis of the space-intensive part of the encoding

scheme from Section 2.5. To capture the primary challenge from Section 2.5, we define

a δ-resilient text. Let bwt(T ) denote the result of applying the bwt to the text T .

For any given constant δ such that 0 < δ ≤ 1, the text T is δ-resilient if the optimal

partition induced by P ∗
h for bwt(T ) satisfies maxy∈Σ{nx,y} ≤ nx − d1/δe for every

context x ∈ P ∗
h . In other words, no partition x of bwt(T ) induced by P ∗

h contains

more than nx − d1/δe identical symbols. We define d = d1/δe. Now, we apply

Theorem 4 to δ-resilient texts and achieve the following lemma.

Lemma 14. For any constant δ with 0 < δ ≤ 1 and any δ-resilient text T of n

symbols over Σ, we have nHh + M(T, Σ, h) ≤ n(δHh + H∗
h) + lg n + g′′

h.

Proof. Let δ = 2γ, where γ is chosen as in Section 2.5.2. In the proof of Theorem 4,

all cases contribute at most δnH∗
h bits to the bound, except for the last case in

Lemma 13. In this case, for context x, ty ≤ tγ = O(1) for all sublists y. Since T

is δ-resilient, the largest sublist y′ in context x contains nx,y′ ≤ nx − d1/δe entries,
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while the other O(1) sublists consist of d1/δe ≤∑y 6=y′ nx,y ≤ tδ = O(1) entries. The

sublist encoding for context x requires lg
(

nx

nx,1,nx,2,...,nx,σ

)
≥ d1/δe lg nx + O(1) bits. To

encode the empirical statistical model, we write the value of nx in lg nx bits using

Lemma 11 and the values of nx,y for y 6= y′ in O(1) bits overall (just like we did in

Theorem 4). Hence, the contribution of encoding this information for M(T, Σ, h) is

lg nx + O(1) ≤ δ lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ O(1) bits. Since H∗

h ≥ Hh (Section 2.2) and the

rest of the proof is identical to the proof of Theorem 4, our lemma is proved.

To prove our lower bound Inequality (2.18) from Theorem 5, we take the following

steps.

• We describe a construction scheme that takes user-defined parameters and cre-

ates a δ-resilient text T of length n.

• We count the total number of δ-resilient texts that our construction scheme

generates, and use a combinatorial argument to bound the space required to

distinguish between these texts.

• To achieve an entropy bound, we take an arbitrary δ-resilient text T and show

that Inequality (2.18) holds.

2.6.1 Constructing δ-resilient Texts

In this section, we describe how to construct δ-resilient texts using a generalized

construction scheme; then, we will use the resulting class of texts to prove Inequal-

ity (2.18) of Theorem 5. First, we define some terminology that will help clarify the

discussion. Let d = d1/δe, where 0 < δ ≤ 1 is a constant. Let Ts be a support

text composed of an alphabet Σ = {a1, a2, . . . , ak, b, c1, c2, . . . , ck, #} of length ns,

where k = O(polylg(n)) > d is a fixed positive integer. Without loss of generality,
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we assume that ai < ai+1 < b < cj < cj+1 < # for all i and j. We define Ts as

Ts = (a1c1)
`1

︸ ︷︷ ︸

r1

(a2c2)
`2

︸ ︷︷ ︸

r2

. . . (akck)
`k

︸ ︷︷ ︸

rk

,

where each `i ≥ d. We define a run ri as the sequence of `i substrings of the

form aib
∗ci. In Ts, b never appears. The length of the support text Ts is ns =

2
∑k

i=1 `i. Consider the support text Ts = a1c1a1c1a2c2a2c2a2c2a3c3a3c3a3c3a3c3.

Here, k = 3, `1 = 2, `2 = 3, and `3 = 4. We now prove the following lemma.

Lemma 15. The Burrows-Wheeler transform of the support text Ts is bwt(Ts) is

bwt(Ts) =

B1
︷ ︸︸ ︷

ck(c1)
`1−1

︸ ︷︷ ︸

P1

c1(c2)
`2−1

︸ ︷︷ ︸

P2

. . . ck−1(ck)
`k−1

︸ ︷︷ ︸

Pk

B2
︷ ︸︸ ︷

(a1)
`1

︸ ︷︷ ︸

Q1

(a2)
`2

︸ ︷︷ ︸

Q2

. . . (ak)
`k

︸ ︷︷ ︸

Qk

,

where B1 = P1P2 . . . Pk is the first block of the bwt transform, and B2 = Q1Q2 . . . Qk

is the second block. Here, Pi refers to the positions of the bwt corresponding to

strings that start with symbol ai, and Qi refers to positions of the bwt corresponding

to strings that start with symbol ci.

Proof. Consider the strings in the bwt matrix M , sorted in lexicographical order.

According to the rank of symbols in alphabet Σ, all strings beginning with ai will

precede strings before ai+1. Similarly, strings beginning with ci will precede strings

beginning with ci+1. Finally, all strings beginning with ai will precede strings begin-

ning with c1. Also, there are exactly `i strings that begin with ai and ci. We now

focus on the strings that begin with ci.

Each string beginning with ci has the symbol ai preceding it (or equivalently, at

the end of the string) in all cases. Thus, the part of the bwt corresponding to strings

beginning with ci is (ai)
`i. Collectively, we call this block B2.

Each string beginning with ai has the symbol ci preceding it (or at the end of the

string, since it’s cyclic), except the string corresponding to the first ai in run ri. This
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string is lexicographically the first string among all of the strings beginning with ai

and is preceded by ci−1 or ck if i = 1. Thus, the part of the bwt corresponding to

strings beginning with ai is ci−1(ci)
`i−1. If i = 1, ci−1 is replaced with ck. Collectively,

we call this block B1.

Thus, the lemma is proved.

For our example support string Ts = a1c1a1c1a2c2a2c2a2c2a3c3a3c3a3c3a3c3, the

resulting bwt is bwt(Ts) =

B1
︷ ︸︸ ︷
c3c1
︸︷︷︸

P1

c1c2c2
︸ ︷︷ ︸

P2

c2c3c3c3
︸ ︷︷ ︸

P3

B2
︷ ︸︸ ︷
a1a1
︸︷︷︸

Q1

a2a2a2
︸ ︷︷ ︸

Q2

a3a3a3a3
︸ ︷︷ ︸

Q3

.

Now, we introduce d = d1/δe partition vectors vi = 〈vi[1], vi[2], . . . vi[k]〉 that

will generate a δ-resilient property for B2; B1 remains unchanged, but will implicitly

encode the length of the corresponding portions of B2. In particular, we augment Ts

as follows: for each entry of vi for all i, we replace the vi[j]th occurrence of the

string ajcj with ajbcj . We will make d such replacements in each of the k partitions.

We call this augmented text T ′
s, of length n′

s = ns + dk.

Lemma 16. The Burrows-Wheeler transform of the augmented text T ′
s is bwt(T ′

s)

is

bwt(T ′
s) =

B1
︷ ︸︸ ︷

P ′
1P

′
2 . . . P ′

k

A
︷ ︸︸ ︷

(a1)
d(a2)

d . . . (ak)
d

B2
︷ ︸︸ ︷

Q′
1Q

′
2 . . . Q′

k,

where P ′
i is composed of symbols preceding strings that start with ai, A is composed of

symbols preceding strings that start with b, and Q′
i is composed of symbols preceding

strings that start with ci.

Proof. This proof is similar to Lemma 15, where each string in Pi precedes strings

in Pi+1. Here, all strings in P ′
i precede strings in P ′

i+1, strings in Q′
i precede strings

in Q′
i+1, and strings in P ′

i precede strings beginning with b (called A) and strings

in A precede strings in Q′
1.

Then, P ′
i is a string of length `i similar to Pi, but the single occurrence of ci−1 (or

ck if i = 1) could be in any of the `i positions. Also, Q′
i is a string of length `i where
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d positions contain the symbol b, and all others are ai. Block A consists of exactly

d occurrences of each ai sorted in lexicographical order, since all d strings beginning

with bci precede all strings beginning with bci+1, thus finishing the proof.

Consider the augmented string T ′
s = a1bc1a1bc1a2c2a2bc2a2bc2a3bc3a3c3a3bc3a3c3,

where d = 2. Then, bwt(T ′
s) =

B1
︷ ︸︸ ︷
c3c1
︸︷︷︸

P ′

1

c2c2c1
︸ ︷︷ ︸

P ′

2

c3c2c3c3
︸ ︷︷ ︸

P ′

3

A
︷ ︸︸ ︷
a1a1a2a2a3a3

B2
︷ ︸︸ ︷

bb
︸︷︷︸

Q′

1

a2bb
︸︷︷︸

Q′

2

a3a3bb
︸ ︷︷ ︸

Q′

3

.

A simple verification will show that blocks A and B2 are δ-resilient portions of T ′
s.

Furthermore, block A is deterministic once the parameters d and k have been chosen;

block B1 encodes the length of each Q′
i. To have a fully δ-resilient text, we want B1 to

have the same property, so we generate the string T = T ′
s(Ts)

d−1#. This will include

d−1 occurrences of a different symbol inside each P ′
1. Note that |T | = n = dns+dk+1.

Lemma 17. Let T = T ′
s(Ts)

d−1#, where Ts is the support text and T ′
s is the augmented

text. Then, the bwt(T ) is

bwt(T ) =

B1
︷ ︸︸ ︷

P ′′
1 P ′′

2 . . . P ′′
k A

B2
︷ ︸︸ ︷

Q′′
1Q

′′
2 . . . Q′′

k ck,

where P ′′
i is composed of symbols preceding strings that start with ai, A is composed of

symbols preceding strings that start with b, and Q′′
i is composed of symbols preceding

strings that start with ci.

Proof. The strings P ′′
i and Q′′

i are of length d`i. Similar to the arguments in Lemma 16,

P ′′
1 consists of the symbol c1 in all but d`1−d positions; one positions contains # and

the other d− 1 positions contain ck. P ′′
i consists of the symbol ci in all but d`i − d

positions; the other d positions contain ci−1. Each Q′′
i is similar to the previous case,

except its length is now d`i. Q′′
i still contains only d occurrences of b.

Finally, the last ck is the symbol preceding # in the text, which is lexicographically

the largest symbol, and therefore the last string represented in the bwt, thus finishing

the proof.
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For our example, let

T = T ′
sTs# = a1bc1a1bc1a2c2a2bc2a2bc2a3bc3a3c3a3bc3a3c3

a1c1a1c1a2c2a2c2a2c2a3c3a3c3a3c3a3c3#.

Then, the bwt(T ′
s) is

bwt(T ′
s) =

B1
︷ ︸︸ ︷

#c1c3c1
︸ ︷︷ ︸

P ′′

1

c2c2c1c1c2c2
︸ ︷︷ ︸

P ′′

2

c3c2c3c3c2c3c3c3
︸ ︷︷ ︸

P ′′

3

A
︷ ︸︸ ︷
a1a1a2a2a3a3

B2
︷ ︸︸ ︷

ba1ba1
︸ ︷︷ ︸

Q′′

1

a2ba2a2ba2
︸ ︷︷ ︸

Q′′

2

a3a3bba3a3a3a3
︸ ︷︷ ︸

Q′′

3

c3.

Now we analyze the cost of encoding a δ-resilient text.

2.6.2 Encoding a δ-resilient Text

In this section, we analyze the space required to store a δ-resilient text. Since B1

and A are deterministic once d and k are chosen, we focus only on the encoding cost

of B2. First, we prove the following lemma.

Lemma 18. For any set of p objects, at least half of them will take at least lg p− 1

bits to encode so that the objects can be distinguished from one another.

Proof. Since one can distinguish at most 2j objects from one another using j bits,

the most succinct encoding would greedily store two objects using one bit each, four

objects using two bits each, and so on. Thus, we need to make sure that
∑j

i 2i ≥ p.

Thus, j + 1 ≥ lg p, and the lemma follows.

Let Λ be the set of all possible choices λ of length parameters `1, `2, . . . , `k used to

generate δ-resilient texts in Section 2.6.1. By construction, |Λ| =
(

ns/2−dk+k−1
k−1

)
. For
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a given choice λ of parameters, we choose d positions in each partition Q′′
i that will

contain a b. However, we are only choosing from the first `i positions for each run ri

(i.e., the positions that correspond to the entries in T ′
s). Once these positions are

chosen, we perform the steps described in our construction scheme. Since the bwt

is a reversible transform, we have
(

`i

d

)
possible partitions Q′′

i and our construction

scheme generates one of

X =
∑

λ∈Λ

(
`1

d

)(
`2

d

)

. . .

(
`k

d

)

different texts. We let an adversary encode the X texts in any way he wishes. Then,

we use Lemma 18 to consider only half of these texts, namely the ones that take at

least lg X − 1 bits to encode. Now we analyze the quantity lg X − 1.

To help analyze lg X − 1, we divide Λ into two sets Y and Z of equal cardinality,

such that for any texts y ∈ Y and z ∈ Z, the product p(y) ≤ p(z), where p(T ) =
∏k

1

(
`i

d

)
. In words, Y contains the texts T where p(T ) is smaller, and Z contains

the ones where p(T ) is larger. We take a single arbitrary text S from set Y and

determine which choice λ∗ of length parameters `i were used. We separate the k

terms corresponding to λ∗ from lg X − 1 and analyze their cost separately. The

terms are
∑k

1 lg
(

`i

d

)
= nH ′

1(S), by our definition of finite set empirical entropy. Since

nH ′
h(S) ≤ nH ′

1(S), the contribution of this part of lg X − 1 is at least nH ′
h(S) bits.

We translate this into a bound in terms of nH∗
h using the following lemma.

Lemma 19. For a δ-resilient text, nH∗
h − Θ(k lg d) ≤ nH ′

h.

Proof. It suffices to show that nH∗
0 − Θ(lg d) ≤ nH ′

0 for each partition Q′′
i in a δ-

resilient text, since there are at most 2k + 1 partitions. We apply Stirling’s double

inequality to the expression lg
(

`i

d

)
and find that

lg

(
li
d

)

> `iH0 +
1

2
lg

`i

d(`i − d)
−O(1)

> `iH0 +
1

2
lg

1

d
− O(1),
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thus proving the lemma.

Thus, the total contribution of the part of lg X− 1 corresponding to the text S is

at least nH∗
h(S)− Θ(k lg d) bits. Now we bound the term X to figure out the entire

cost of encoding the string S. We will lower bound X by the sum for just the set Z

and obtain

X ≥
∑

z∈Z

k∏

1

(
`i

d

)

≥
∑

z∈Z

p(S)

=
1

2

(
ns/2− dk + k − 1

k − 1

)

p(S).

Taking logs, we require nH∗
h(S) + lg

(
ns/2−dk+k−1

k−1

)
− 1 bits of space.

To finish the proof, we analyze the contribution of the term lg
(

ns/2−dk+k−1
k−1

)
. For

ease of notation, let g = ns/2−dk+k−1. We want to show that (k−1) lg(g/(k−1)) ≤
lg
(

g
k−1

)
. The claim is true by inspection when g ≤ 4 or k− 1 is 0, 1, or g− 1. For the

remainder of the cases, we apply Stirling’s inequality as in Theorem 1 to verify the

claim. Now, (k − 1) lg(g/(k − 1)) ≥ (k − 1) lg(ns/2) − (k − 1) lg(dk) − (k − 1) lg k.

Thus, the contribution of this part of lg X − 1 is at least (k − 1) lg n − Θ(k lg(dk))

bits, proving Inequality (2.18) and Theorem 5 for any arbitrary δ-resilient text S.

2.7 Random Access to the

Compressed Representation of LF and Φ

In Section 2.3, we have described the importance of the LF mapping and the Φ

function for compressing the bwt. As we shall see, these functions are also essential to

performing compressed text indexing. However, we need more functionality since we

need random access to their compressed values with a small cost for decoding. With
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the techniques discussed so far, computing the ith value of LF or Φ, for 1 ≤ i ≤ n,

has two major drawbacks:

• We need to decompress all the information, even if we need a single value of

LF or Φ.

• The decompression is sequentially performed even though the required access

is random.

We circumvent the two drawbacks above by using succinct dictionaries and com-

pressed directories for speeding up the access and avoiding to decompress all the

data while keeping the space occupancy entropy-bound. The main contribution of

this section is to show how to store LF and Φ in compressed format so that each call

decompresses just a small portion of their format:

• Each call takes O(lg σ) time using further O(n lg lg n/ lgσ n) = o(n lg σ) bits of

space for storing the compressed auxiliary data structures.

• Each call takes O(1) time using further O(n) bits for the compressed auxiliary

data structures (i.e. o(n lg σ) bits when σ is not a constant).

We proceed in the rest of the section as follows. In Section 2.7.1, we describe how

to extend the functionalities of the wavelet trees to succinct dictionaries. We then

show how to use wavelet trees and some auxiliary data structures to get the random

access to the compressed representation of Φ in Section 2.7.2 and to that of LF in

Section 2.7.3.

2.7.1 Wavelet Trees as Succinct Dictionaries

Our compressed directories hinge on constant-time rank and select data structures

[Jac89b, Mun96, Pag01, RRR02]. For a bitvector B of size n, the function rank 1(B, i)

returns the number of 1s in B up to (and including) position i. The function

select1(B, i) returns the position of the ith 1 in B. We can also define rank0 and
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select0 in terms of the 0s in B. As previously mentioned in Section 2.4.2, subset

encoding can implicitly represent B as a subset of the elements from 1 . . . n, asso-

ciating each 1, say in position j in B, with element j in the subset.9 Letting t be

the number of elements thus implicitly represented (the number of 1s in the bitvec-

tor), we can replace bitvector B supporting rank 1 and select1 with the constant-

time indexable dictionaries developed by Raman, Raman, and Rao [RRR02], re-

quiring
⌈
lg
(

n
t

)⌉
+ O(t lg lg t/ lg t) + O(lg lg n) bits. As can be seen, the bound of

subset encoding,
⌈
lg
(

n
t

)⌉
, has an additional term for the fast-access directories,

O(t lg lg t/ lg t) + O(lg lg n). Moreover, rank1(B, i) = −1 if B[i] 6= 1 in indexable

dictionaries. If we wish to support the full functionalities of rank1, select1, rank0,

and select0, we need to use the fully-indexable version of their structure, called an

fid.

Theorem 6 (Raman, Raman, and Rao [RRR02]). An fid storing t items out

of a universe of n items, requires

⌈

lg

(
n

t

)⌉

+ O

(
n lg lg n

lg n

)

bits of space. Each call to rank1, select1, rank0, and select0 takes O(1) time.

Note that the additional term of O(n lg lg n/ lg n) in Theorem 6 is related to

the universe size n, instead of the subset size t. Analogously to what done with

subset encoding, since lg
(

n
t

)
≤ n, we will use fids as space-efficient replacements of

bitvectors of length n with t 1s (alternatively, with n − t 0s) supporting rank and

select on both 0s and 1s.10 In this way, we can successfully reuse part of the analysis

given in Section 2.3.

9Note that ranking/unranking a subset refers to the lexicographic generation of subsets mentioned

in Section 2.4.2, not to be confused with the rank function defined here.

10In this chapter, we write rank(i) or select(i) to denote the appropriate function on 1s when there

is no confusion.
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Let us now consider the wavelet trees as defined in Section 2.4.3. What we obtain

by replacing the subset encodings in the nodes with fids, is a generalization of rank

and select operations from binary to σ-ary vectors. We adopt the notation introduced

in Section 2.4.3, where sy denotes the 〈x, y〉 sublist of nx,y entries and 1 ≤ y ≤ tx.

(Recall that tx ≤ σ is the number of nonempty sublists for context x, and, without

loss of generality, the symbols from Σ for these sublists are renumbered from 1 to

tx.) Each contiguous portion of symbols of the bwt corresponding to context x is

stored by a separate wavelet tree; we denote this portion by wx = wx[1 . . . nx]. To

make the discussion a bit more general, we define two primitives, where 1 ≤ y ≤ tx

and 1 ≤ i ≤ nx:

• For each symbol y, function rank ′
y(wx, i) returns the number of occurrences of y

in wx up to (and including) position i.

• For each symbol y, function select ′y(wx, i) returns the position of the ith occur-

rence of y in wx.

When wx = B and y ∈ {0, 1}, we obtain the classic rank and select operations

on bitvectors B. Next, we show how wavelet trees can support rank ′ and select ′

efficiently using fids.

Lemma 20. Using a wavelet tree for context x, we can encode the tx nonempty

sublists for that context in fewer than

lg

(
nx

nx,1, nx,2, . . . , nx,σ

)

+ O

(

tx + nx lg lg nx

lgtx nx

)

bits, so that rank ′ and select ′ take O(lg tx) time.

To begin with, we augment our wavelet tree by replacing the t-subset encod-

ing of [Knu05, Rus05] with the fid structure from [RRR02]. To resolve query

select ′y(wx, i) on our new wavelet tree for wx, we follow these steps.

. select ′y(wx, i):
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1. Set s = sy.

2. If s is the left child, search for the ith 0 in s’s parent dictionary: set i =

select0(i).

3. If s is the right child, search for the ith 1 in s’s parent dictionary: set i =

select1(i).

4. Set s = parent(s).

5. Recurse to step 2, unless s = root .

6. Return i as the answer to the query select ′ in sublist sy.

This query trivially requires O(lg tx) time since select takes constant time and the

depth of the wavelet tree is O(lg tx) as shown in Lemma 6. The other query can be

performed analogously.

. rank ′
y(wx, i):

1. Set s = root .

2. If sy is a descendant of the left child, set i = rank0(i) in s’s dictionary.

3. If sy is a descendant of the right child, set i = rank1(i) in s’s dictionary.

4. Set s = the child of s that is an ancestor of leaf sy.

5. Recurse to step 2, unless s = sy.

6. Return i as the answer to the query rank ′ in sublist sy.

This query also requires O(lg tx) time. The space analysis of the new wavelet tree is

similar to that of the unaugmented wavelet tree in Lemma 6, except that we must sum

the costs of the lower-order terms for the fids. Specifically, there are O(lg tx) levels

in the wavelet tree and, for each such level, there are universe sizes u1, u2, . . . , ur,

such that r < tx and
∑r

j=1 uj ≤ nx. Each fid gives an extra contribution of at most

cuj lg lg uj/ lg uj bits to the analysis in Lemma 6, for a constant c > 0. For a given
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level in the wavelet tree, we claim that the additional number of bits is

r∑

j=1

cuj lg lg uj/ lg uj = O(nx lg lg nx/ lg nx). (2.20)

Hence, we get a total of O(nx lg lg nx/ lgtx nx) bits of space for all the levels. In order

to prove our claim (2.20), first note that there exists a constant κ0 > 1 such that the

function f(κ) = κ lg lg κ/ lg κ is concave for any κ > κ0. We then split the sum in

Equation (2.20) in two parts. The first part involves the terms such that uj ≤ κ0,

giving a total contribution of O(r), since κ0 is constant with respect to nx and r, the

number of nonempty sublists in the given level of the wavelet tree. The second part

involves only the terms such that uj > κ0, for which the concavity of f(κ) holds.

Multiplying by r/r and applying Jensen’s inequality [CT91], we obtain

r

r
×

r∑

j=1

c
uj lg lg uj

lg uj
= O

(

r ×
(
∑r

j=1 uj/r) lg lg(
∑r

j=1 uj/r)

lg(
∑r

j=1 uj/r)

)

= O

(
nx lg lg(nx/r)

lg(nx/r)

)

.

Note the sum over the r values on all levels of the wavelet tree is tx − 1 (i.e. the

number of internal nodes), so that the total is O(tx + nx lg lg nx/ lgtx nx) additional

bits, thus completing the proof of Lemma 20. This term seems difficult to improve

due to strong evidence from Miltersen [Mil05]. In the following, when we invoke the

rank and select operations, we specify the dictionary they refer to unless this is clear

from the context.

2.7.2 Random Access to the

Compressed Representation of Φ

We now describe how to store, in compressed format, the Φ function described in

Section 2.3.1, so as we can quickly compute any value Φ(i), for 1 ≤ i ≤ n, by

decompressing a small portion of the format. We employ the conceptual table T
described in Section 2.3.2, and adopt T ’s encoding for the bwt given at the end of
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Section 2.3.2, except that the wavelet trees are now augmented with fids as discussed

in Section 2.7.1 (cf. Theorem 6). Recall that in order to support a query for Φ(i), we

need to decompress the ith nonempty entry in the concatenation in column major

order of the sublists in T . (We refer to Table 2.5 for an example.) We need the

following basic information: the list y containing entry Φ(i); the context x such that

the 〈x, y〉 sublist contains Φ(i); the element z stored explicitly in the normalized

〈x, y〉 sublist (see Table 2.5); the number of elements #x in all contexts prior to x.

In the example for Φ(2) = 10, we have y = i, x = s, #x = 7, and z = 3. The

value for Φ(i) is then #x + z because of the normalization of the sublists described

in Section 2.3.2. We execute five main steps to answer a query.

. Query Φ(i):

1. Consult a directory G to determine Φ(i)’s list y and the number of elements in

all prior lists, #y. (We now know that Φ(i) is the (i−#y)th element in list y.)

In the example above, we consult G to find y = i and #y = 0.

2. Consult a list Ly to determine the context x of the (i−#y)th element in list y.

For example, we consult Li to determine x = s. We identify the 〈x, y〉 sublist

and #p, the number of entries in previous sublists 〈x, y′〉 with y′ < y.

3. Look up the appropriate entry in 〈x, y〉 to find z. This entry occupies position

i−#y−#p inside 〈x, y〉; hence, z = select ′y(i−#y−#p) for context x. In the

example, we look for the first entry in the 〈s, i〉 sublist and determine z = 3.

4. Consult a directory F to determine #x, the number of elements in all prior

contexts. In the example, after looking at F , we determine #x = 7.

5. Return #x + z as the solution to Φ(i). The example would then return Φ(i) =

#x + z = 7 + 3 = 10.

We now detail some of the steps given above, describing the set of auxiliary data

structures.
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Directories G and F

We describe the details of the directory G (and the analogous structure F ), which

determines Φ(i)’s list y and the number of elements in all prior lists #y. We can

think of G conceptually as a bitvector of length n. For each nonempty list y (consid-

ered in lexicographical order) containing ny =
∑

x∈P ∗

h
nx,y elements (where P ∗

h is the

optimal prefix cover defined in Section 2.2), we write a 1, followed by (ny − 1) 0s.

Intuitively, each 1 represents the first element of a list. Since there are as many 1s

in G as nonempty lists, G cannot have more than l = σ 1s. To retrieve the desired

information in constant time, we compute y = rank(G, i) and #y = select(G, y)− 1.

The F directory is similar, where each 1 denotes the start of a context x (considered

in lexicographical order), rather than the start of a list, followed by (nx−1) 0s. Since

there are at most c = |P ∗
h | ≤ σh possible contexts, we have at most that many 1s.

We use fids to store these directories.

Lemma 21. We can store G using

⌈

lg

(
n

l

)⌉

+ O

(
n lg lg n

lg n

)

= O

(

σ lg
(

1 +
n

σ

)

+
n lg lg n

lg n

)

bits of space, and F using space (in bits) of

⌈

lg

(
n

c

)⌉

+ O

(
n lg lg n

lg n

)

= O

(

|P ∗
h | lg

(

1 +
n

|P ∗
h |

)

+
n lg lg n

lg n

)

.

List-Specific Directory Ly

Once we know which list y our query Φ(i) is in, we must find its context x. We

create a directory Ly for each list y, exploiting the fact that the entries are grouped

into 〈x, y〉 sublists as follows. We can think of Ly conceptually as a bitvector of

length ny, the number of items indexed in list y. For each nonempty 〈x, y〉 sublist

(in lexicographical order by x) containing nx,y elements, we write a 1, followed by

(nx,y − 1) 0s. Intuitively, each 1 represents the first element of a sublist. Since there
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are as many 1s in Ly as nonempty sublists in list y, that directory cannot have more

than min{|P ∗
h |, ny} 1s. Directory Ly is made up of two distinct components:

The first component is a fid that produces a nonempty context number p > 0. In

the example, the same context x = p has p = 1 in list i while has p = 2 in list p. It also

produces the number #p of items in all prior sublists. In the example, context x = p

has #p = 0 in list i, and #p = 1 in list p. To retrieve the desired information in

constant time, we compute p = rank(Ly, i−#y) and #p = select(Ly, p)− 1.

In order to save space, we actually store a single directory shared by all lists y.

For each list y, we can retrieve the list’s p and #p values. Conceptually, we represent

this global directory L as a simple concatenation (in lexicographical order by y) of

the list-specific bitvectors described above. The only additional information we need

is the starting position of each of the above bitvectors, which is easily obtained by

computing start = #y. We compute p = rank(i)− rank(start) and #p = select(p +

rank(start)) − start − 1 = select(rank(i)) − start − 1. We implement L by a single

fid storing s entries in a universe of size n, where s =
∑

x∈P ∗

h
tx is the number of

nonempty sublists.

Lemma 22. We can compute the local nonempty context number p and #p in con-

stant time, and the space used (in bits) is

⌈

lg

(
n

s

)⌉

+ O

(
n lg lg n

lg n

)

= O

(

s lg
(

1 +
n

s

)

+
n lg lg n

lg n

)

.

The second component maps p, the local context number for list y, into the global

one x. Since there are at most |P ∗
h | different contexts x for nonempty sublists 〈x, y〉

and at most σ nonempty lists y, we use the concatenation of σ bitvectors of |P ∗
h | bits

each, where bitvector by corresponds to list y and its 1s correspond to the nonempty

sublists of list y. We represent the concatenation of bitvectors by (in lexicographical

order by y) using a single fid. Mapping a value p to a context x for a particular
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list y is equivalent to identifying the position of the pth 1 in by. This can be done by

a constant number of rank and select queries.

Lemma 23. We can map the local nonempty context number p to x in constant time,

and the space used (in bits) is

⌈

lg

(|P ∗
h |σ
s

)⌉

+ O

(
(|P ∗

h |σ) lg lg(|P ∗
h |σ)

lg(|P ∗
h |σ)

)

= o
(
σh+1

)
.

Time and Space Complexity

Theorem 7. The neighbor function Φ can be represented in a compressed format for

a text of n symbols over the alphabet Σ using nHh+O(n lg lg n/ lgσ n)+g′
h lg(1+n/g′

h)

bits of space, where g′
h = O(σh+1), so that each call to Φ takes O(lg σ) time.

Proof. The space occupancy is that indicated by Theorem 2, except that Lemma 6

should be replaced by Lemma 20 plus the additional terms indicated in Lemma 21,

Lemma 22 and Lemma 23, where s =
∑

x∈P ∗

h
tx is bounded by g′

h. The time cost is

constant except for the wavelet tree, as stated in Lemma 20, where tx ≤ σ.

Theorem 8. The neighbor function Φ can be represented in a compressed format

using nHh + O(n) + g′
h lg(1 + n/g′

h) bits of space, so that each call to Φ takes O(1)

time.

Proof. The proof is analogous to that of Theorem 7, except that for each context x,

the wavelet tree is replaced by a set of tx indexable dictionaries [RRR02] representing

sublists 〈x, y〉 for 1 ≤ y ≤ tx with dlg
(

nx

nx,y

)
e+ O(nx,y lg lg nx,y/ lg nx,y) bits (since we

only need select operations on them, there is no need to use an fid). When we need

to perform select ′y for context x, we just run the select operation on the indexable

dictionary for 〈x, y〉. By Lemma 4, using indexable dictionaries adds a term that

sums up to O(n) in the bound of Theorem 7, but we only perform O(1) constant-

time queries to a single dictionary, in total, O(1) time. This scheme may pay when σ
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is not a constant, since it requires additional O(n) = o(n lg σ) bits of space for the

auxiliary data structures.

2.7.3 Random Access to the

Compressed Representation of LF

The machinery for the compressed representation of Φ can be reused also for the LF

mapping. In [FM05], it is shown that LF (i) = C[L[i]]+Occ(i, L[i]) for any 1 ≤ i ≤ n.

Here, for any y ∈ Σ, vector C[y] counts the number of occurrences of symbols y ′ < y

appearing in the text T , and Occ(i, y) is the number of occurrences of y appearing in

the first i positions of the bwt (here it is identified with L). It turns out that, given i,

we can compute the context x and the list y = L[i] as described for Query Φ(i) in

Section 2.7.2. Then, we can obtain Occ(i, y) as the value of rank ′
y(i−#y−#p)+#y

for context x. The following are corollaries of Theorems 7 and 8.

Corollary 1. The LF mapping can be represented in a compressed format for a text

of n symbols over the alphabet Σ using nHh +O(n lg lg n/ lgσ n)+ g′
h lg(1+n/g′

h) bits

of space, where g′
h = O(σh+1), so that each call to LF takes O(lg σ) time.

In particular, we note that in Corollary 2, we can use the indexable dictionaries

since we invoke rank(i) for a suitable sublist 〈x, y〉, such that y = L[i], the ith symbol

in the bwt. This corresponds to the weak form of rank supported by indexable

dictionaries.

Corollary 2. The LF mapping can be represented in a compressed format using

nHh + O(n) + g′
h lg(1 + n/g′

h) bits of space, so that each call to LF takes O(1) time.
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2.8 Using the Framework for Compressed Suffix

Arrays

In this section, we use the machinery developed so far to achieve text indexing,

showcasing the insights we obtained in our prior investigation. In the remainder of

this chapter, we will detail the results of our csa, though analogous methods hold

for the fm-index implemented with the wavelet tree. In fact, there are a whole host

of methods now that use Φ or the LF mapping (see the survey in [NM06a]).

2.8.1 Compressed Suffix Arrays (CSAs)

To recap, a standard suffix array [GBS92, MM93] is an array containing the position

of each of the n suffixes of text T in lexicographical order. In particular, SA[i] is the

starting position in T of the ith suffix in lexicographical order, T
[
SA[i], n

]
. The size

of a suffix array is Θ(n lg n) bits, as each of the positions stored uses lg n bits. A suffix

array allows constant time lookup to SA[i] for any i. In order to achieve self-indexing,

we also use the notion of the inverse suffix array SA−1, such that SA−1[j] = i if and

only if SA[i] = j. In other words, SA−1[j] gives the rank in the lexicographic order

of suffix T [j, n] among the suffixes of T .

The csa contains the same information as a standard (inverse) suffix array, though

it operates only on a compressed format. For the rest of the chapter, we assume that

the csa supports the following set of operations as given in [GV05, Sad03, Sad02b].

Definition 2. Given a text T of length n, a compressed suffix array (csa) for T sup-

ports the following operations without requiring explicit storage of T or its (inverse)

suffix arrays, SA and SA−1:

• compress(T ) produces a compressed representation, Z, that encodes (i) text T ,

(ii) its suffix array SA, and (iii) its inverse suffix array SA−1;
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• lookupZ(i) returns the value of SA[i], the position of the ith suffix in lexico-

graphical order, for 1 ≤ i ≤ n;

• lookup−1
Z (j) returns the value of SA−1[j], the rank of the jth suffix in T , for

1 ≤ j ≤ n;

• substringZ(i, c) decompresses the first c symbol prefix of the suffix T
[
SA[i], n

]
,

for 1 ≤ i ≤ n and 1 ≤ c ≤ n− SA[i] + 1.

We drop some of the parameters from the operations listed in Definition 2 when-

ever their usage is clear from the context. For example, if we wish to decompress the

c = 6 symbols belonging to the text substring T [18, 25], we indicate the correspond-

ing operations as follows. First we find the lexicographic position, lookup−1(18) = 16,

of its corresponding suffix and then we execute substring(16, c).

The structure of a csa is recursive in nature, where each of the ` = lg lgσ n levels

indexes half the elements of the previous level. Hence, the kth level indexes nk = n/2k

elements. We review and use this recursive decomposition given below:11

1. Start with SA0 = SA, the suffix array for text T .

2. For each 0 ≤ k < `, transform SAk into a more succinct representation through

the use of a bitvector Bk, function rank(Bk, i), neighbor function Φk, and SAk+1

(representing the recursion).

3. The final level, ` = lg lgσ n is written explicitly.

SAk is not explicitly stored (except at the last level `), but we refer to it for the

sake of explanation. Bk is a bitvector such that Bk[i] = 1 if and only if SAk[i] is

even. Even-positioned suffixes are represented in SAk+1 with their positions divided

by 2. To retrieve odd-positioned suffixes, we employ the neighbor function Φk, which

maps a position i in SAk containing the value p into the position j in SAk containing

11We use the neighbor function Φk to emphasize its importance to our methods; for the full level

approach, Grossi and Vitter use the partial function Ψk in their exposition.
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the value p + 1. In words, Φk is the Φ function from Section 2.3.1 applied to SAk

instead of SA. Hence, we can equivalently describe Φk by the following formula (also

handling the case when SAk[i] = n):

Φk(i) =
{

j such that SAk[j] = (SAk[i] mod n) + 1
}

.

A lookup for SAk[i] can be answered in the following way:

SAk[i] =







2 · SAk+1

[
rank(Bk, i)

]
if Bk[i] = 1

SAk

[
Φk(i)

]
− 1 if Bk[i] = 0.

An example of the recursion for a text T is given below, where a < b < # and #

is a special end-of-text symbol. (The text T is borrowed from [GV05], but note that

the Φk function is used instead.) No further levels are needed, since the four suffix

array pointers at level 3 are stored explicitly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 13 17 19 10 7 4 1 21 28 24 31 14 12 18 9 6 3 20 27 23 30 11 8 5 2 26 22 29 25 32

B0: 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1

rank(B0, i): 0 1 1 1 1 2 2 3 3 3 4 5 5 6 7 8 8 9 9 10 10 10 11 11 12 12 13 14 15 15 15 16

Φ0: 2 4 14 16 20 24 25 26 27 29 30 31 32 1 3 5 6 7 8 10 11 12 13 15 17 18 19 21 22 23 28 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA1: 8 5 2 14 12 7 6 9 3 10 15 4 1 13 11 16

B1: 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1

rank(B1, i): 1 1 2 3 4 4 5 5 5 6 6 7 7 7 7 8

Φ1: 8 7 9 11 14 1 6 10 12 15 16 2 3 4 5 13

1 2 3 4 5 6 7 8

SA2: 4 1 7 6 3 5 2 8

B2: 1 0 0 1 0 0 1 1

rank(B2, i): 1 1 1 2 2 2 3 4

Φ2: 6 7 8 3 1 4 5 2

1 2 3 4

SA3: 2 3 1 4
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Here, Φ0(4) = 16, since SA0[4] = 17 and SA0[16] = 17+1 = 18. For this example,

suppose we already know SA1. To retrieve SA0[16], since B0[16] = 1, we compute

2 · SA1[rank(B0, 16)] = 2 ·SA1[8] = 2 · 9 = 18. To retrieve SA0[4], since B0[4] = 0, we

compute SA0[Φ0(4)]− 1 = SA0[16]− 1 = 18− 1 = 17.

The csa has two incarnations that show some inherent space/time tradeoffs. The

first (time-efficient) version reduces the space requirement to O(n lg σ lg lgσ n) bits,

while lookup takes only O(lg lgσ n) time. This version explicitly uses the recursive

structure explained above. The second (space-efficient) version skips all but a con-

stant fraction ε of these levels, for some 0 < ε ≤ 1, relying on a succinct dictionary Dk

to perform the task of Bk, but instead mapping elements several levels away. This

scheme reduces the space requirement to O(ε−1n lg σ), however lookup now takes

O(lgε
σ n) time. In practice, the second scheme is much better, as the slowdown in

searching is reasonable. We remark that Sadakane [Sad03] has shown that the space

complexity can be restated in terms of the order-0 entropy H0 ≤ lg σ, giving as a

result O(ε−1H0 n) bits.

In order to compress SA−1 along with SA, it suffices to keep SA−1
` in the last level `,

as the rest of the machinery for compressing SA and SA−1 is identical [Sad03, Sad02b].

Hence the cost of lookup−1 is the same as that for lookup, and it suffices to discuss the

latter only. Moreover, it is not difficult to extend the substring operation using Φk

for any value of k, such that each application of Φk decompresses Θ(2k) symbols at

a time, for a total cost of O(c/2k) time plus the cost of a lookup. We use the inverse

suffix array and this extended version of substring in Section 2.9.

2.8.2 High-Order Entropy-Compressed Suffix Arrays

We consider the task of attaining entropy bounds for the usage of space in the csa by

using our unified algorithmic framework for Φk at each level k, which contributes the
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bulk of the space that the csa uses. In the rest of this section, we prove the tradeoffs

shown in Table 2.1 for the space and time complexity of a csa and its supported

operations as given in Definition 2.

Theorem 9 (Time-Efficient Entropy-Compressed Suffix Arrays). Implement-

ing a csa uses nHh lg lgσ n + O
(
n
(
lg lg lgσ n/ lg lgσ n + lg lg n/ lgσ n + lg σ/ lgσ n

)
+

σh(nβ + σ)
)

bits and O
(
n lg σ + σh(nβ + σ)

)
preprocessing time for compress, for

any arbitrarily small constant 0 < β < 1. (The space increases to O(n) = o(n lg σ)

when σ is non-constant.) Each lookup takes O(lg lgσ n) time and each substring call

for c symbols takes the cost of lookup plus O(c/ lgσ n) time.

It is worth noting that the space bound in Theorem 9 is nHh lg lgσ n+o(n lg σ) bits

when h + 1 ≤ α lgσ n for any arbitrary positive constant α < 1. (We fix β such that

α + β < 1.) 12 When lg σ = Θ(lg n), the space bound reduces to O(nHh) + o(n lg σ)

bits and lookup time is O(1). A better space usage can be obtained with the following

tradeoff.

Theorem 10 (Space-Efficient Entropy-Compressed Suffix Arrays). Imple-

menting a csa uses ε−1nHh + O
(
n lg lg n/ lgε

σ n + σh(nβ + σ)
)

bits and O
(
n lg σ +

σh(nβ + σ)
)

preprocessing time for compress, for any arbitrarily small constants

0 < β < 1 and 0 < ε ≤ 1/2. Each lookup takes O
(
(lgσ n)ε/1−ε lg σ

)
time and

each substring call for c symbols takes the cost of lookup plus O(c/ lgσ n) time.

For an alphabet of non-constant size, we can use the following corollary of Theo-

rem 10:

Corollary 3 (Space-Efficient Entropy-Compressed Suffix Arrays). Imple-

menting a csa uses ε−1nHh + O(n + σh(nβ + σ)
)

bits and O
(
n lg σ + σh(nβ + σ)

)

12The assumption on h + 1 ≤ α lgσ n is reasonable since Luczak and Szpankowski [LS97] show that

the average phrase length of the Lempel-Ziv encoding for ergodic sources is O(lg n) bits.
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preprocessing time for compress, for any arbitrarily small constants 0 < β < 1 and

0 < ε ≤ 1/2. Each lookup takes O
(
(lgσ n)ε/1−ε

)
time and each substring call for c

symbols takes the cost of lookup plus O(c/ lgσ n) time.

The space bound in Theorem 10 and Corollary 3 is ε−1nHh + o(n lg σ) when

h+1 ≤ α lgσ n for σ = ω(1) and any arbitrary positive constant α < 1 (we fix β such

that α + β < 1). A special case gives the best space bound in this chapter:

Theorem 11 (Nearly Space-Optimal Entropy-Compressed Suffix Arrays).

Implementing a csa uses nHh + O
(
n lg lg n/ lgσ n + σh(nβ + σ)

)
bits and O(n lg σ +

σh(nβ + σ)) preprocessing time for compress, for any arbitrarily small constant 0 <

β < 1. Each lookup takes O(lg2 n/ lg lg n) time and each substring call for c symbols

takes the cost of lookup plus O(c lg σ) time.

The csa in Theorem 11 is a nearly space-optimal self-index in that it uses the

same space as the compressed text—nHh bits—plus the lower-order terms for the

text indexing directories. For example, we get nHh + O(n lg lg n/ lg n) bits when

σ = O(1) and h + 1 ≤ α lgσ n for any arbitrary constant α < 1 (we fix β such that

α+β < 1). All space bounds mentioned above include implicitly the cost M(T, Σ, h)

of the statistical model, which is dominated by the other lower-order terms.

Compressed Representation of the Neighbor Function Φk

We now show how to obtain entropy bounds for implementing Φk at each level k of a

csa. We refer to the machinery discussed for the implementation of Φ in Section 2.7.2.

Since Φ = Φ0 and n = n0, we can use either of Theorems 7 and 8 for level k = 0.

Hence we restrict our focus on level k > 0, for which we are interested in extending

the bounds of Theorem 8. We introduce some useful notation to this end. We denote

the number of elements at level k by nk = n/2k, and the number of elements at level k

that are in context x by nx
k. Similarly, we define ny

k as the number of elements at level k
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in list y; and nx,y
k as the number of elements at level k that are in both context x and

list y, that is, the size of sublist 〈x, y〉. Note that nk =
∑

x nx
k =

∑

y ny
k =

∑

x,y nx,y
k .

Lemma 24. For any level k, the Φk function can be represented in a compressed

format using nHh + O(nk + σ2k+h) bits of space, so that each call to Φk takes O(1)

time.

Proof. We conceptually partition the symbols of the text T into n/2k non-overlapping

segments of 2k symbols each, assuming without loss of generality that n is a multiple

of 2k. We refer to each segment as a “meta-symbol” and we can regard the text T

as a new text Tk consisting of n/2k meta-symbols over the alphabet Σ′ = Σk. (These

meta-symbols are precisely those corresponding to the Σ′ lists at level k. We still

draw contexts of length h from the original text T .) Note that SAk is the suffix

array for Tk and Φk is the corresponding Φ function at level k. Consequently, we can

implement Φk along the lines described in Section 2.7.2. However, a direct application

of Theorem 8 to Tk for the analysis of the space usage requires some observations to

obtain the claimed bounds.

First, we need to refine the analysis by reviewing the space complexity of the

auxiliary data structures in Section 2.7.2, indexing them by k to denote their use

at level k. Directories Gk and Fk require O(nk) bits of space by Lemma 21 (where

l = lk, n = nk), using the fact that lg
(

a
b

)
≤ a. Directories Ly

k, for all lists y at level k,

occupy a total of O(nk +σ2k+h) bits by Lemma 22 and Lemma 23 (where n = nk and

s ≤ nk is an upper bound on the number of sublists at level k).

Second, we need to relate the high-order entropy of Tk with Hh in our analysis.

The current Tk is built on all of the even text positions of Tk−1. Similarly, there is

also text built on odd positions. Let T e
k = Tk and T o

k denote the two different ways of

merging every two symbols of Tk−1. When reflected to T , note that T o
k and T e

k overlap

in T except for O(2k) initial or final symbols in T . Hence, they essentially encode the
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same information. We bound the entropy of T o
k and T e

k together, showing that their

total entropy is no more than nH ′
h + nH ′

h+1 bits, which can be bounded by 2nHh by

Theorem 1. Hence, representing any of the two requires at most nHh + O(2k lg σ)

bits, proving the lemma (since we need that bound for T e
k ). For the sake of clarity,

let nx,yz
o denote the number of occurrences in T o

k of the concatenated sequence yzx,

where y, z ∈ σ2k
and x ∈ P ∗

h . We set nx,yz
o = 0 when x is not aligned to a position

of T o
k reflected in T . We similarly define nx,yz

e for T e
k . Then, their entropy is

nH ′
h(T

o
k ) + nH ′

h(T
e
k ) =

∑

x∈P ∗

h

lg

(
nx

o

nx,11
o , nx,12

o , . . . , nx,σ2kσ2k

o

)

+
∑

x∈P ∗

h

lg

(
nx

e

nx,11
e , nx,12

e , . . . , nx,σ2kσ2k

e

)

(2.21)

Using Equation (2.14), we separate the terms in (2.21) fully into a product of

binomial coefficients with σ2k+1

total terms. Then, since
(

a
b

)(
c
d

)
≤
(

a+c
b+d

)
for all positive

a ≥ b, c ≥ d, we simplify by combining the respective terms in (2.21) to get

∑

x∈P ∗

h

lg

(
nx

nx,11, nx,12, . . . , nx,σ2k σ2k

)

=
∑

x∈P ∗

h

lg

(

nx!
∏

y,z∈σ2k nx,yz!

)

=
∑

x∈P ∗

h

lg

(

nx!
∏

y,z∈σ2k nx,yz!

)(∏

z∈σ2k nx,z!
∏

z∈σ2k nx,z!

)

=
∑

x∈P ∗

h

lg

(
nx!

∏

z∈σ2k nx,z!

)( ∏

z∈σ2k nzx!
∏

y,z∈σ2k nzx,y!

)

= nH ′
h + nH ′

h+1

by the definition of high-order empirical entropy H ′
h from equation (2.9) and multi-

nomial coefficients. Thus, one of the two texts at level k requires at most nHh bits to

encode (since nH ′
h ≤ nHh and nH ′

h+1 ≤ nH ′
h). We build level k on this text, storing

one bit to indicate whether we are storing even or odd text positions at each level,

thus proving the lemma.
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Bounds for the Entropy-Compressed Suffix Array

We have almost all of the pieces we need to prove Theorems 9–11 for csa. We begin

with the proof of Theorem 9. We define ` = lg lgσ n to be the last level in the csa,

as given in Section 2.8.1. We introduce a special level `′ = ` − O(1), such that

σ2`′

= O(nβ) for any arbitrary constant 0 < β < 1. Our choice of `′ implies that

2`′ = Θ(lgσ n) and 2`−`′ = O(1).

Instead of storing all levels as discussed in Section 2.8.1, we only store the levels

k = 0, lg `′, lg `′ +1, lg `′ +2, . . . , `′ − 1, `′ of the recursion in the csa. (Notice the gap

between 0 and lg `′, and the gap between `′ and `.) For each of these levels up to `′,

we store a bitvector Bk and a neighbor function Φk as described in Section 2.8.1,

with their space detailed in the points below:

1. Bitvector B0 stores nlg `′ entries out of a universe of size n, implemented as an in-

dexable dictionary [RRR02] using O(nlg `′ lg(n/nlg `′)) = O(n lg lg lgσ n/ lg lgσ n)

bits. For lg `′ ≤ k ≤ `′− 1, bitvector Bk stores nk/2 entries out of a universe of

size nk, implemented as an indexable dictionary requiring O(nk) bits. Hence,

the total contribution is O(n lg lg lgσ n/ lg lgσ n) bits.

2. Neighbor function Φk is implemented as described in Section 2.8.2. The space

bounds are stated in Theorems 7–8 when k = 0, either nHh+O(n lg lg n/ lgσ n)+

g′
h lg(1+n/g′

h) or nHh+O(n)+g′
h lg(1+n/g′

h) bits of space, where g′
h = O(σh+1).

For k > 0, we use Lemma 24, which gives
∑`′

k=lg `′(nHh + O(nk + σ2k+h)) <

nHh(lg lgσ n−1)+O(nlg `′ +σ2`′+h) bits, where the second term can be bounded

as O(nlg `′ + σ2`′+h) = O(n/ lg lgσ n + σhnβ).

3. Level k = ` should explicitly store the suffix array SA` and the inverted suffix

array SA−1
` , according to what we described in Section 2.8.1. To significantly

reduce the space usage, we now store the arrays at level ` + lg t(n) where we

fix t(n) = lg lgσ n. Hence we store SA`+lg t(n), SA−1
`+lg t(n), along with an array
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LCP `+lg t(n) for the longest common prefix information [MM93] to allow fast

searching in SA`+lg t(n), with a total space contribution of O(n lg σ/ lg lgσ n)

bits for level ` + lg t(n).

Summing up the bounds in points 1–3, we obtain a final bound of nHh lg lgσ n +

O
(
n
(
lg lg lgσ n/ lg lgσ n+lg lg n/ lgσ n+lg σ/ lgσ n

)
+σh(nβ+σ)

)
bits of space required

for the csa, for any arbitrarily small constant 0 < β < 1. Note that the latter

bound is nHh lg lgσ n + o(n lg σ) + O(σh(nβ + σ)). The space has an additional term

O(n) = o(n lg σ) when σ is non-constant, since we use Theorem 8 for level k = 0.

Building the above data structures is a variation of what was done in [GV05]; thus

it takes O
(
n lg σ+σh(nβ +σ)

)
time to compress (as given in Definition 2). The lookup

operation requires O(2lg `′ + `′ +2`+lg t(n)−`′) = O(lg lgσ n) time because accessing any

of the data structures in any level requires constant time. (Note that, for level k = 0,

we use Theorem 7 if σ = O(1) or Theorem 8 otherwise). A substring query for

c symbols requires O(c/ lgσ n + lg lgσ n) time since Φ`′ decompresses 2`′ = Θ(lgσ n)

symbols at a time, as we remarked in Section 2.8.1. This completes the proof of

Theorem 9.

We now discuss the complexity of csa that leads to Theorem 10. We keep a

constant number 1/ε of the levels as in [GV05], where 0 < ε ≤ 1/2. In particular, we

store level 0, level `′, and then one level every other λ`′ levels; in sum, 1 + 1/λ = 1/ε

levels, where λ = ε/(1−ε) with 0 < λ < 1. Each such level k ≤ `′ stores the following

data structures:

• A directory Dk (in place of Bk in point 1 above) storing the nk+λ`′ (or n`

when k = `′) entries of the next sampled level. Note that D0, which stores nλ`′

entries out of a universe of size n, requires just O(nλ`′`
′) = O(n lg lgσ n/ lgλ

σ n)

bits by using an indexable dictionary [RRR02]. Each of the other Dk’s add a

geometrically decreasing contribution upper bounded by the cost of D0.
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• A neighbor function Φk implemented as given in point 2 above. For all levels

k = λ`′, 2λ`′, . . ., neighbor function Φk contributes a (geometrically decreasing)

total of O(nλ`′) = O(n/ lgλ
σ n) bits, in addition to the term of O(σ2`′+h) =

O(σhnβ) as before. Note that the analysis for Φ0 is as given in point 2 above.

The total required space is therefore (where λ > ε)

ε−1nHh +O

(
n lg lgσ n

lgλ
σ n

+
n lg lg n

lgσ n
+ σhnβ

)

= ε−1nHh +O

(
n lg lg n

lgε
σ n

+ σhnβ

)

.

(2.22)

• The arrays mentioned in point 3 above, except that we now fix t(n) = lgλ
σ n lg σ.

Thus, we obtain a total space contribution of O(n lg σ/t(n)) = O(n/ lgλ
σ n) bits.

In sum, we obtain a total space complexity that is bounded by Equation (2.22).

Thus, we are able to save space at a small cost to lookup, namely, O(2λ`′ lg σ +

(1/ε − 1)2λ`′ + 2`+lg t(n)−`′) time, where the lg σ factor in the first term is due to

the implementation of Φ0 with the bounds of Theorem 7. Simplifying, we obtain

O(lgλ
σ n lg σ + t(n)) = O(lgλ

σ n lg σ) = O((lgσ n)ε/1−ε lg σ). The substring operation

for c symbols requires an additional O(c/ lgσ n) time. We can drop the lg σ factor to

O(1) in Corollary 3 by using Theorem 8 for the analysis of Φ0. Building the above

data structures is again a variation of what was done for Theorem 9, so compress

requires O(n lg σ + σhnβ) time, thus proving Theorem 10.

Finally, we prove Theorem 11, which is an interesting special case by a simple

modification of the scheme described above. Here we just keep levels 0 and `+lg t(n)

where t(n) = lg n/ lg lg n. We store the following data structures:

• Dictionary D0 stores n`+lg t(n) entries over a universe of size n in O(n`+lg t(n)(`+

lg t(n))) = O(n(lg lgσ n + lg t(n))/(t(n) lgσ n)) bits using an indexable dictio-

nary [RRR02].

• The neighbor function Φ0 from point 2 above, with the bounds of Theorem 7.

• The three arrays as given in point 3 above, using O(n lg σ/t(n)) bits.
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Thus, the total space is nHh + O(n(lg lgσ n + lg t(n))/(t(n) lgσ n) + n lg lg n/ lgσ n +

n lg σ/t(n)) = nHh + O(n lg lg n/ lgσ n) bits. We also have to add O
(
σh+1 lg(1 +

n/σh+1)
)

bits for the statistical model. The lookup cost is bounded by O(2`+lg t(n) lg σ) =

O(t(n) lgσ n lg σ) = O(lg2 n/ lg lg n), where the lg σ factor comes from the cost of a

call to Φ0 (with the bounds of Theorem 7). Similarly, decompressing each symbol in

substring has a O(lg σ) cost.

2.9 Applications to Text Indexing

We use the csa as an integral component of an efficient text indexing structure that

attains the hth-order entropy for a text T of n symbols over alphabet Σ. Throughout

this section, we assume that h + 1 ≤ α lgσ n for any arbitrary constant α < 1 to

guarantee that the encoding of the empirical statistical model requires o(n) bits.13 Our

high-order entropy-compressed text indexes support fast searching of a pattern P

of length m in O(m + polylg(n)) time with only nHh + o(n) bits, where nHh is

the information-theoretic upper bound on the number of bits required to encode

the text T of length n (cf. Section 2.2). We also describe a text index that takes

o(m) search time and uses o(n) bits on highly compressible texts with a small-sized

alphabet Σ. The full list of tradeoffs for the space and time complexity of compressed

text indexing is shown in Table 2.2.

2.9.1 High-Order Entropy-Compressed Text Indexing

We now present our search of a pattern P of length m in the csa for T . We need the

following pattern matching tool to search for P in a sequence of contiguous suffixes

13This condition is not satisfied if keeping the suffix array uncompressed for the text T requires

nearly the same space as encoding the hth-order empirical statistics of T . Hence T is not a

low-entropy text.
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stored in the csa, in compressed form, where the proof of Lemma 25 is given in

Section 2.9.2.

Lemma 25 (Pattern Matching Tool). Given a sequence of r consecutive suffixes

stored in the csa, we can search for the leftmost and the rightmost of these suffixes

having a pattern P of length m as a prefix, in O(m + r) symbol comparisons plus

O(r) lookup and substring operations.

We show how to search P using the csa and the tool in Lemma 25. We first

perform a binary search of P in SA`+lg t(n), which is stored explicitly along with

LCP `+lg t(n), the longest common prefix information required in [MM93]. (The term t(n)

depends on the implementation of the csa as described in Section 2.8.2.) Because we

have the longest common prefix information, the binary search requires only O(m)

symbol comparisons plus O(lg n) lookup and substring operations. At that point, we

locate r = 2`+lg t(n) = O(t(n) lgσ n) contiguous suffixes stored, in compressed form,

in the csa. We run the pattern matching tool in Lemma 25 on these r suffixes, at

the cost of O(m + t(n) lgσ n) symbol comparisons and O(t(n) lgσ n) calls to lookup

and substring, which is also the asymptotic cost of the whole search. The following

results show several tradeoffs that we obtain with the simple search scheme described

so far.

Theorem 12. Given a text T of n symbols over an alphabet Σ, we can replace T by

a csa occupying ε−1nHh + O(n lg lg n/ lgε
σ n) bits, so that searching for a pattern of

length m takes O(m/ lgσ n + (lg n)(1+ε)/(1−ε)(lg σ)(1−3ε)/(1−ε)) time, for any fixed value

of 0 < ε ≤ 1/2. Reporting each occurrence of the pattern P will take no more than

O((lg n)(1+ε)/(1−ε)(lg σ)(1−3ε)/(1−ε)) time.

Proof. Using Theorem 10, we have t(n) = lgλ
σ n lg σ, where λ = ε/(1− ε). The O(m+

t(n) lgσ n) symbol comparisons give a contribution of O((m + lg1+λ
σ n lg σ)/ lgσ n) =
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O(m/ lgσ n + lgλ
σ n lg σ), since we can decompress and compare Θ(lgσ n) adjacent

symbols with O(1) RAM operations. The O(t(n) lgσ n) = O(lg1+λ
σ n lg σ) calls to

lookup and substring (see Lemma 25) give a contribution of O(lg1+2λ
σ n lg2 σ) =

O((lg n)(1+ε)/(1−ε)(lg σ)(1−3ε)/(1−ε)).

For example, fixing ε = 1/2 in Theorem 12 when σ = O(1), we obtain a search

time of O(m/ lgn+occ×lg3 n) with a self-index occupying 2nHh + O(n lg lg n/
√

lg n )

bits, where occ is the number of occurrences reported. We can reduce the space

to nHh bits plus a lower-order term, obtaining the first nearly space-optimal self-

index with polylg(n) reporting time.

Theorem 13. Given a text of n symbols over an alphabet Σ, we can replace it by a

csa occupying nearly optimal space, i.e., nHh+O(n lg lg n/ lgσ n) bits, so that search-

ing for a pattern of length m takes O(m lg σ + lg4 n/(lg2 lg n lg σ)) time. Reporting

each pattern occurrence takes O(m lg σ + lg4 n/(lg2 lg n lg σ)) time.

Proof. Using Theorem 11, we have t(n) = lg n/ lg lg n. The O(m+ t(n) lgσ n) symbol

comparisons contribute O(m lg σ + lg2 n/ lg lg n) time in total, while the O(t(n) lgσ n) =

O(lg2 n/(lg lg n lg σ)) calls to lookup and substring contribute O(lg4 n/(lg2 lg n lg σ)).

If we augment the csa to obtain the hybrid multi-level data structure in [GV05],

we can improve the lower-order terms in the search time of Theorem 12, where

t(n) = lgλ
σ n lg σ and λ = ε/(1 − ε) > ε. We use a sparse suffix tree storing ev-

ery other (t(n) lg n)th suffix using O(n/t(n)) = O(n/ lgε
σ n) bits to locate a portion

of the (compressed) suffix array storing O(t(n) lg n) suffixes. However, we do not

immediately run our pattern matching tool from Lemma 25; instead, we employ a

nested sequence of space-efficient Patricia tries [MRS01a] of size lgω−λ n until we are

left with segments of r = lgλ
σ n adjacent suffixes in the csa, for any fixed value of
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1 > ω ≥ 2λ > 0. This scheme adds O(n/r) = O(n/ lgε
σ n) bits to the self-index,

allowing us to restrict the search of pattern P to a segment of r consecutive suffixes

in the csa. At this point, we run our pattern matching tool from Lemma 25 on these

r suffixes to identify the leftmost occurrence of the pattern.

Theorem 14. Given a text of n symbols over an alphabet Σ, we can replace it by

a hybrid csa occupying ε−1nHh + O(n lg lg n/ lgε
σ n) bits, so that searching for a

pattern of length m takes O(m/ lgσ n + lgω n lg1−ε σ) time, for any fixed value of

1 > ω ≥ 2ε/(1− ε) > 0 and 0 < ε ≤ 1/3.

Proof. Searching in the sparse suffix tree takes O(m/ lgσ n+lgλ
σ n lg σ) time as in [GV05],

where the second term is our lookup cost in Theorem 10 with λ = ε/(1 − ε). Then,

the search goes through a constant number of space-efficient Patricia tries with

O(lgω−λ n) calls to lookup and substring , each of O(lgλ
σ n lg σ) time, requiring a total

of O(lgω n lg1−ε σ) time by Theorem 10. Finally, the pattern matching tool is run on a

segment of r = O(lgλ
σ n) suffixes, in O(lg2λ

σ n lg σ) = O(lgω n lg1−ε σ) time. The cost of

comparing Θ(lgσ n) symbols at a time and decompressing them sums to O(m/ lgσ n),

where the additional cost of substring is accounted for above.

For low-entropy texts, we provide the first self-index with small alphabets that is

sublinear both in space and in search time.

Corollary 4. When Hh = o(1) for a text over an alphabet of size σ = O(1), the self-

index in Theorem 14 occupies just o(n) bits and requires o(m) search time. Reporting

each occurrence takes o(lg n) time.

2.9.2 A Pattern Matching Tool

In this section, we prove Lemma 25 by describing the implementation of the following

pattern matching tool. Given a list of r sequences S1 ≤ · · · ≤ Sr in lexicographical
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order, the pattern matching tool identifies the least sequence Si having P as a prefix

in O(m + r) time. (Identifying the greatest such sequence is analogous.) We first

assume that these r suffixes are explicitly given. Next, we show how to adapt the

tool when these suffixes are stored, in compressed form, in the csa.

Our search tool is reminiscent of the Patricia search [Mor68], the Hirschberg’s

sequential search [Hir78], and the Bit-Tree search [Fer92], as we only need one full

comparison of P against a suffix. Our tool examines the sequences S1, . . . , Sr in left-

to-right order. We start out by comparing the symbols of P against the symbols of S1

consecutively until there is a mismatch. We then find the first match in S2 starting

with the symbol that caused the mismatch with S1. We repeat this process starting

at S2. We stop when we have examined all the sequences unsuccessfully (declaring

that there is no occurrence of P ), or we succeed in matching the symbols of P at

sequence Si. The steps are detailed below, where we denote the kth symbol of a

sequence S by S[k]:

1. Set i = 1 and k = 1.

2. Increment k until either k > m or Si[k] 6= P [k]. If k > m, go to step 4;

otherwise, find the smallest j > i such that Sj[k] = P [k].

3. If such j does not exist, declare that P is not the prefix of any sequence and

quit with a failure. Otherwise, assign the value of j to i.

4. If k ≤ m, go to step 2. Otherwise, check whether Si has P as a prefix, returning

Si as the least sequence in case of success; declare a failure otherwise.

Denoting the positions assigned to i in step 3 with i1 < i2 < · · · < ik, we observe

that we do not access the first k − 1 symbols of Sik−1+1, . . . , Sik , which could be

potential mismatches. In general, we compare only a total of O(ik + k) symbols of

Si1 , . . . , Sik against those in P , where ik ≤ r. Only when we have reached the end

of the pattern P (i.e. k > m) do we set i = im and perform a full comparison of P
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against Si in order to determine if there is really a match. This results in a correct

method notwithstanding potential mismatches.

Lemma 26. Given a list of r sequences S1, . . . , Sr in lexicographical order, let Si be

the sequence identified by our search tool. If the pattern P is a prefix of Si, then Si is

the least sequence with this property. Otherwise, no sequence in S1, . . . , Sr has P as

a prefix. The cost of the search is O(m + r) time, where m is the length of P .

Proof. Suppose P is a prefix of Si, where Si was identified by our search tool. We

first show that P is not a prefix of S1, . . . , Si−1. Suppose by contradiction that a

sequence Sf has P as a prefix, where f < i. Suppose that we are matching the kth

symbol of P at the time we examine Sf . Since P is a prefix of Sf , we have a match

and our search tool scans the (k + 1)st symbol in P , the (k + 2)nd symbol in P and

so on, matching all of them with Sf . Hence, our search tool identifies Sf with f 6= i,

giving a contradiction. This logic proves the first part of the lemma; namely that Si

is the least sequence having P as a prefix, because we consider the sequences Si in

lexicographical order.

To prove the second part, we know that our search tool fails to match P . To see

why no sequence in S1, . . . , Sr has P as a prefix, note that S1, . . . , Si−1 cannot have P

as a prefix as shown in the previous paragraph. We also have to show this property

for the remaining sequences Si, . . . , Sr. Suppose by contradiction that a sequence Sj,

with j ≥ i, has P as a prefix. Let k be the position of the rightmost symbol in P

that we compare to Sj. Our method implies that the kth symbol in Sj is different

from that of P . Hence, P cannot be a prefix of Sj, giving the contradiction.

Finally, the time required is O(m + r), as each comparison in our method con-

tributes to at most 2m matches and at most r mismatches.

We now evaluate how the time complexity is affected if S1, . . . , Sr are implicitly

stored in the csa, say, at consecutive positions q + 1, . . . , q + r for a suitable value
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of q. To use our search tool, we need to decompress starting from the kth symbol of

a suffix Si by knowing its position q + i in the csa. (Recall that SA[q + i] contains

the starting position of Si in the text.) To this end, it suffices to decompress the

first symbols in the suffix at position SA−1
[
SA[q + i] + k − 1

]
in the csa, where SA

and SA−1 denote the suffix array and its inverse (as mentioned in Definition 2).

Equivalently, the latter suffix Sj can be obtained by removing the first k− 1 symbols

from Si since j = SA[q + i] + k− 1. This scheme only requires a constant number of

lookup operations and a single substring operation, with a cost that is independent

of the value of k, thus proving Lemma 25.

2.10 Conclusions

We have presented a unified algorithmic framework for analysis of compression and

text indexing. We described two techniques—a context-sensitive partitioning scheme

and the wavelet tree—to provide the first optimal space bounds for the Burrows-

Wheeler transform aside from lower-order terms. We then used this critical frame-

work to develop a text indexing structure based on a high-order entropy-compressed

suffix array that exhibit several tradeoffs between occupied space, search, and de-

compression time. We described how to implement them as a self-index requiring

nHh + O(n lg lg n/ lgσ n) bits of space and allowing searches of patterns of length m

in O(m lg σ + polylg(n)) time. Our scheme provides the first self-index that asymp-

totically realizes the high-order entropy Hh per symbol of the text. We also proved

how to achieve the first self-index with sublinear size o(n) in bits and sublinear query

time o(m) for low-entropy texts over an alphabet of constant size.

The most immediate goal is to address whether a compressed full-text index with

nHh + O(polylg(n)) bits and O(m + polylg(n)) query time exists. If not, it would

separate indexing from compression for very low-entropy strings. Beyond that, we
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would like to achieve nHh +O(n lg lg n/ lgσ n) bits with an optimal O(m/ lgσ n+occ)

search time. A compelling problem is to improve the time for lookup so that each call

takes constant time. Another interesting challenge would be to support approximate

matches (those that match patterns with some threshold of error).
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Original Sorted Mappings Suffix Array

Q F L i LF (i) Φ(i) SA[i]

mississippi# i ppi#missis s 1 8 7 8 ippi#

#mississippi i ssippi#mis s 2 9 10 5 issippi#

i#mississipp i ssissippi# m 3 5 11 2 ississippi#

pi#mississip i #mississip p 4 6 12 11 i#

ppi#mississi m ississippi # 5 12 3 1 mississippi#

ippi#mississ p i#mississi p 6 7 4 10 pi#

sippi#missis p pi#mississ i 7 1 6 9 ppi#

ssippi#missi s ippi#missi s 8 10 1 7 sippi#

issippi#miss s issippi#mi s 9 11 2 4 sissippi#

sissippi#mis s sippi#miss i 10 2 8 6 ssippi#

ssissippi#mi s sissippi#m i 11 3 9 3 ssissippi#

ississippi#m # mississipp i 12 4 5 12 #

Table 2.3: Matrix Q for the bwt containing the cyclic shifts of text

T = mississippi# (column ‘Original’). Sorting of the rows of Q, in which the

first (F ) and last (L) symbols in each row are separated (column ‘Sorted’). Func-

tions LF and Φ for each row of the sorted Q (column ‘Mappings’). Suffix array SA

for T (column ‘Suffix Array ’).
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context x list i list m list p list s list #

i ∅ 〈3〉 〈4〉 〈1, 2〉 ∅

m ∅ ∅ ∅ ∅ 〈5〉

p 〈7〉 ∅ 〈6〉 ∅ ∅
s 〈10, 11〉 ∅ ∅ 〈8, 9〉 ∅

# 〈12〉 ∅ ∅ ∅ ∅

Table 2.4: An example of our conceptual table T , where each sublist 〈x, y〉 contain

nx,y entries. The contexts x are associated with rows and the lists y are associated

with columns.

context x nx #x list i list m list p list s list #

i 4 0 ∅ 〈3〉 〈4〉 〈1, 2〉 ∅

m 1 4 ∅ ∅ ∅ ∅ 〈1〉
p 2 5 〈2〉 ∅ 〈1〉 ∅ ∅

s 4 7 〈3, 4〉 ∅ ∅ 〈1, 2〉 ∅

# 1 11 〈1〉 ∅ ∅ ∅ ∅

Table 2.5: The sublists of Table 2.4 in normalized form. The value of nx is defined

as in Equation (2.9) and indicates the interval length in the row for context x. The

value #x should be added to the sublists’ entries in row x to obtain the same entries

in Table 2.4.
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Chapter 3

When Indexing Equals Compression:
Experiments with Compressing Suffix
Arrays and Applications

3.1 Introduction

Suffix arrays and suffix trees are ubiquitous data structures at the heart of several text

and string algorithms. They are used in a wide variety of applications, including pattern

matching, text and information retrieval, Web searching, and sequence analysis in compu-

tational biology [Gus97b]. We consider the text as a sequence T of n symbols, each drawn

from the alphabet Σ = {0, 1, . . . , σ}. The raw text T occupies n lg |Σ| bits of storage.

The suffix tree is a powerful text index (in the form of a compact trie) whose leaves store

each of the n suffixes contained in the text T . Suffix trees [MM93, McC76] allow fast, general

searching of patterns in T in O(m lg |Σ|) time, but require roughly 4n lg n bits of space—

16 times the size of the text itself, in addition to needing a copy of the text. The suffix

array is another well-known index structure. It maintains the permuted order of 1, 2, . . . , n

that corresponds to the locations of the suffixes of the text in lexicographically sorted order.

Suffix arrays [GBS92, MM93] (that also store the length of the longest common prefix) are

nearly as good at searching. Their search time is O(m+lg n) time, but they require a copy

of the text; the space cost is only n lg n bits (which can be reduced about 40% in some

cases).

There are a number of other common indexes that give access to the text, however, none

of these can operate without the text itself. Compressed suffix arrays [GV05, Rao02, Sad03,

Sad02b] and opportunistic FM-indexes [FM05, FM01] represent modern trends in the design

of advanced indexes for full-text searching of documents. They support the functionalities of

suffix arrays and suffix trees (which are more powerful than classical inverted files [GBS92]),
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yet they overcome the aforementioned space limitations by exploiting, in a novel way, the

notion of text compressibility and the techniques developed for succinct data structures

and bounded-universe dictionaries [BM99, Pag01, RRR02].

A key idea in these new schemes is that of self-indexing. If the index is able to search

for and retrieve any portion of the text without accessing the text itself, we no longer have

to maintain the text in raw form—which can translate into a huge space savings. Self-

indexes can thus replace the text as in standard text compression. However, self-indexes

support more functionality than standard text compression. In these cases, the indexing

scheme is itself a compression method. We focus on these scenarios, where indexing equals

compression.

Grossi and Vitter [GV05] developed the compressed suffix array using 2n lg |Σ| bits in

the worst case with o(m) searching time. Sadakane [Sad03, Sad02b] extended its func-

tionality to a self-index and related the space bound to the order-0 empirical entropy H0.

Ferragina and Manzini devised the FM-index [FM05, FM01], which is based on the Burrows-

Wheeler transform (bwt) and is the first to encode the index size with respect to the hth-

order empirical entropy Hh of the text, encoding in (5 + ε)nHh + o(n) bits. Grossi, Gupta,

and Vitter [GGV03] exploited the higher-order entropy Hh of the text to represent a com-

pressed suffix array in just nHh + o(n) bits. The index is optimal in space, apart from

lower-order terms, achieving asymptotically the empirical entropy of the text (with a mul-

tiplicative constant of 1). More results appeared subsequently, and we refer the reader to

the survey in [NM06a] for the state of the art.

The above self-indexes are so powerful that the text is implicitly encoded in them

and is not needed explicitly. Searching decompresses a negligible portion of the text and is

competitive with previous solutions. In practical implementation, these new indexes occupy

around 25–40% of the text size and do not need to keep the text itself.
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3.1.1 Our Results

In this chapter, we provide an experimental study of compressed suffix arrays in order to

evaluate their practical impact. In doing so, we exploit the properties and intuition of our

earlier result [GGV03] and develop a new design that is driven by experimental analysis

for enhanced performance. Briefly, we mention the following new contributions. The work

in this chapter was a collaborative effort with Luca Foschini, Roberto Grossi, and Jeffrey

Scott Vitter.

Since compressed suffix arrays hinge on succinct dictionaries, we provide a new practical

implementation of succinct dictionaries that takes less space than the predicted space based

on a worst-case analysis. We then use these dictionaries (organized in a wavelet tree), along

with run-length encoding (RLE) and γ encoding, to achieve a simplified “encoding” for high-

order contexts. This construction shows that Move-to-Front (MTF) [BSTW86], arithmetic,

and Huffman encoding are not strictly necessary to achieve high-order compression with

the Burrows-Wheeler Transform (bwt). Recent work of Ferragina et al. [FGMS05] shows

how to find an optimal partition of the bwt to attain the same goal; we take a different

route and show that the wavelet tree implicitly leads to an optimal partition when using

RLE and integer encoding.

We then extend the wavelet tree so that its search can be sped up by fractional cas-

cading and an a-priori distribution on the queries. In addition, we describe an algorithm

to construct the wavelet tree in O(n + min(n, nHh) × lg |Σ|) time, introducing the novel

concept that indexing/compression time should be related to the compressibility of the

data. (Said in another way, highly compressible data should not only be more compact

when compressed, but should also require less time to index and compress.) Recently Hon,

Sadakane, and Sung have shown how to build the compressed suffix array and FM-index

in O(n lg lg |Σ|) time [Sad03]. One of our main results in this chapter is to give an analysis

of our practically-motivated structure and show that it still has competitive theoretical

guarantees on space consumption, namely, 2nHh + o(n) bits of space.

We also detail a simplified version of our structure which serves as a powerful compressor
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for the Burrows-Wheeler Transform (bwt). In experiments, we obtain a compression ratio

comparable to that of bzip2. In addition, we go on to obtain a compressed representation

of fully equipped suffix trees (and their associated text) in a total space that is comparable

to that of the text alone compressed with gzip.

In the rest of the chapter, we use ‘bps’ to denote the average number of bits needed

per text symbol or per dictionary entry. In order to get the compression ratio in terms of

a percentage, it suffices to multiply bps by 100/8.

3.1.2 Outline of Chapter

The rest of the chapter is organized as follows. In the next section, we build the critical

framework in describing our practical dictionaries, providing both theoretical and practical

intuition on our choice. We then describe a simple scheme for fast access to our dictionaries

in practice. In Section 3.3, we describe our wavelet tree structure, which forms the basis

for our compression format wzip. In Section 3.4, we describe a practical implementation

of compressed suffix arrays [GV05, GGV03], grounded firmly with theoretical analysis. In

Section 3.5, we discuss a space-efficient implementation of suffix trees. We conclude in

Section 3.6.

3.2 A Simple Yet Powerful Dictionary

As previously mentioned, compressed suffix arrays make crucial use of succinct dictionaries.

Thus, we first focus on our implementation of them. We recall that succinct dictionaries are

constant-time rank and select data structures occupying tiny space. They store t entries

chosen from a bounded universe [0 . . . n−1] in
⌈
lg
(n

t

)⌉
≤ n bits, plus additional bits for fast

access to the entries. The bound comes from the information-theoretic observation that we

need
⌈
lg
(n

t

)⌉
bits to enumerate each of the

(n
t

)
possible subsets of [0 . . . n−1]. Equivalently,

this is the number of bitvectors B of length n (the universe size) with exactly t 1s, such

that entry x is stored in the dictionary if and only if B[x] = 1. The dictionaries support
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several operations. The function rank 1(B, i) returns the number of 1s in B up to (and

including) position i. The function select 1(B, i) returns the position of the ith 1 in B.

Analogous definitions hold for 0s. The bit B[x] can be computed as B[x] = rank 1(B, x)−

rank1(B, x−1). In the following, we consider the succinct dictionaries called fully indexable

dictionaries [RRR02], which support the full repertoire of rank and select for both 0s and

1s in
⌈
lg
(n

t

)⌉
+ o(n) bits.

Let p(1) = t/n be the empirical probability of finding a 1 in bitvector B, and p(0) =

1− p(1). We define the empirical entropy H0 as

H0 = −p(0) lg p(0)− p(1) lg p(1).

As shown in [GGV03], the empirical entropy H0 can be approximated by 1
n lg

(n
t

)
. Thus,

we can think of succinct dictionaries as 0th-order compressors that can also retrieve any

individual bit in constant time. Specifically, the data structuring framework in [GGV03]

uses suffix arrays to transform succinct dictionaries into a high-order entropy-compressed

text index. As a result, we stress the important consideration of dictionaries in practice,

since they contribute fast access to data as well as solid, effective compression. In particular,

such dictionaries avoid a complete sequential scan of the data when retrieving portions of it.

They also provide the basis for space-efficient representation of trees and graphs [Jac89a,

MR99].

3.2.1 Practical Dictionaries

We now explore practical alternatives to dictionaries for use in compressed text indexing

data structures. When implementing a dictionary D, there are two main space issues to

consider:

• The second-order space term o(n), which is often incurred to improve access time to

the data, is non-negligible and can dominate the lg
(n

t

)
term.

• The lg
(
n
t

)
term is not necessarily the best possible in practice. As with strings, we

can achieve “entropy” bounds that are better than lg
(n

t

)
∼ nH0.
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Before describing our practical variant of dictionaries, let’s focus on a basic representa-

tion problem for the dictionary D seen as a bitvector BD. Do we always need lg
(n

t

)
bits to

represent BD? For instance, if D stores the even numbers in a bounded universe of size n,

a simple argument based on the Kolmogorov complexity of BD implies that we can repre-

sent this information with O(lg n) bits. Similarly, if D stores n/2 elements of a contiguous

interval of the universe, we can again represent this information with O(lg n) bits. The

lg
(
n
t

)
term treats these two cases the same a random set of t = n/2 integers stored in D;

thus, the worst-case bound is lg
( n
n/2

)
∼ n bits of space. That is, it is a worst-case measure

that does not account for the distribution of the 1s and 0s inside BD, which may allow

significant compression (as in the previous examples). In other words, the lg
(
n
t

)
bound

only exploits the sparsity of the data we wish to retain.

This observation sparks the realization that many of the bitvectors in common use are

probably compressible, even if they represent a minority among all possible bitvectors. Is

there then some general method by which we can exploit these patterns? The solution is

surprisingly simple and uses elementary notions in data compression [WMB99]. We briefly

describe those relevant notions.

Run-length encoding (RLE) represents each subsequence of identical symbols (a run)

as the pair (`, s), where ` is the number of times that symbol s is repeated. For a binary

string, we do not need to encode s, since its value will alternate between 0 and 1. (We

explicitly store the first bit.)

The length ` is then encoded in some fashion. One such method is the γ code, which

represents the length ` in two parts: The first encodes 1 + blg `c in unary, followed by

the value of ` − 2blg `c encoded in binary, for a total of 1 + 2blg `c bits. For example, the

γ codes for ` = 1, 2, 3, 4, 5, . . . are 1,010,011,00100,00101, . . ., respectively. The δ code

requires asymptotically fewer bits by encoding 1+blg `c via the γ code rather than in unary,

thus requiring 1 + blg `c + 2blg lg 2`c bits. For example, the δ codes for ` = 1, 2, 3, 4, 5, . . .

are 1,0100,0101,01100,01101, . . ., respectively. Byte-aligned codes are another simple

encoding for positive integers. Let lb(`) = 1 + blg `c, the minimal number of bits required
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to represent the positive integer `. A byte-aligned code splits the lb(`) bits into groups of 7

bits each, prepending a “continuation” bit as most significant to indicate whether there are

more bits of ` in the next byte. We refer to [WMB99] for other encodings.

We can represent a conceptual bitvector BD by a vector of nonnegative “gaps” G =

{g1, g2, . . . , gt}, where BD = 0g110g21 . . . 0gt1 and each gi ≥ 0. We assume that BD ends

with a 1; if not, we can use an extra bit to denote this case and encode the final gap length

separately. We also assume that t ≤ n/2 or else we reverse the role of 0 and 1. Using gap

encoding we cannot require less than

E(G) =

t∑

i=1

lb(gi + 1) (3.1)

to store the gaps corresponding to BD. We now show that E(G) is closely related to the

optimal worst-case encoding of BD, which takes lg
(
n
t

)
bits.

Fact 1. For a conceptual bitvector BD of known length n, such that BD ends with a 1, its

gap encoding G satisfies

E(G) < lg

(
n

t

)

+1/2 lg(t(n− t)/n)+ lg e [(1/(12t) + 1/(12(n − t))− 1/(12n + 1)]+ lg
√

2π,

where t ≤ n/2 is the number of 1s in BD.

Proof. By convexity, the worst-case optimal cost occurs when the gaps are of equal length,

i.e. gi+1 ≤ n/t, giving E(G) =
∑t

i=1 lb(gi+1) ≤ t lb(n/t) ≤ t+t lg(n/t) ≤ (n−t) lg(n/(n−

t))+ t lg(n/t), since t ≤ (n− t) lg(n/(n− t)) when t ≤ n/2. By Stirling’s inequality, lg
(n

t

)
>

t lg(n/t)+(n−t) lg(n/(n−t))−1/2 lg(t(n−t)/n)−[(1/(12t) + 1/(12(n − t))− 1/(12n + 1)] lg e−

lg
√

2π, thus proving the fact.

An approach that works better in practice, although not quite as well in the worst case,

is to represent BD by the vector of positive run-length values L = {`1, `2, . . . , `j} (with

j ≤ 2t and
∑

i `i = n) where either BD = 1`10`21`3 . . . or BD = 0`11`20`3 . . .. (We can

determine which case by a single additional bit.) Using run-length encoding, we cannot

require less than

E(L) =

j
∑

i=1

lb(`i) (3.2)
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bits. By a similar argument to Fact 1, we can prove the following:

Fact 2. For a conceptual bitvector BD of known length n, such that BD ends with a 1, its

run-length encoding L satisfies E(L) < E(G)+ t, where t ≤ n/2 is the number of 1s in BD.

Proof. We first consider the case where we encode each run of 1s in unary encoding, i.e.,

we encode each 1 using one bit. In total, the t 1s require t total bits. We encode each run `

of 0s in lb(`) bits; thus, the encoding of 0s is unchanged. (Note that this scheme is still

decodeable when the γ code is used instead of lb, since there are no zero-length runs and

γ codes begin with 0.) It is plain to see that E(L) ≤ E(G) + t. If we change our encoding

of 1s to use lb instead of unary, encoding the runs of 1s will certainly take no more than t

bits, thus proving the fact.

We do not claim that E(G) or E(L) is the minimal number of bits required to store D.

For instance, storing the even numbers in BD implies that `i = 1 (for all i), and thus

E(L) ≈ lg
(n

t

)
≈ 2t = n. Using RLE twice to encode BD, we obtain O(lg n) required

bits, as indicated by Kolmogorov complexity. On the other hand, finding the Kolmogorov

complexity of an arbitrary string is undecidable [LV97].

Despite its theoretical misgivings, we give experimental results on random data in Ta-

ble 3.1 showing that E(L) ≤ lg
(
n
t

)
. Data generated are bitvectors BD whose gap encod-

ing G is produced by choosing a maximum gap length and generating uniformly random

gaps in G between 0 and that maximum length (reported on a logarithmic scale in the first

column). The second column, denoted RLE+γ, reports the average number of bits per

gap (bpg) required to encode BD using RLE to generate L and the γ code to encode the

integers in L, as described before. The third column, denoted Gap+γ, reports the average

number of bits per gap required to encode BD using the gaps in G represented with the

γ code. The fourth column reports the value of lg
(n

t

)
, where n is the length of BD and t

is the number of 1s in it. Since t is also the number of gaps in G, the figure is still the

average number of bits per gap. In the last two columns, we report similar results for the

average number of bits per gap in E(L) and E(G).
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lg(gap) RLE+γ Gap+γ lg
(n

t

)
E(L) E(G)

1 1.634 2.001 1.378 1.315 1.500

2 2.900 3.000 2.427 2.199 2.000

3 4.477 4.000 3.439 3.111 2.500

4 6.256 5.625 4.442 3.998 3.313

5 8.142 7.374 5.445 5.000 4.187

6 10.091 9.193 6.440 5.995 5.097

7 12.067 11.116 7.443 6.993 6.058

8 14.075 13.073 8.444 7.989 7.037

9 16.056 15.030 9.444 8.990 8.015

10 18.124 17.029 10.449 10.004 9.014

Table 3.1: Comparison between RLE encoding (RLE+γ), gap encoding (Gap+γ),

and related measures (lg
(

n
t

)
, E(L), and E(G)). Each bitvector BD is produced by

choosing a maximum gap length and generating uniformly random gaps of 0s between

consecutive 1s. The gap column indicates the maximum gap length on a logarithmic

scale. The values in the table are the bits per gap (bpg) required by each method.

E(L) outperforms lg
(
n
t

)
for real data sets, since the worst case for RLE (all equally

spaced 1s) hardly occurs. We also observe that RLE+γ outperforms Gap+γ for small gap

sizes (namely 4 or less). This behavior motivates our choice for RLE to implement succinct

dictionaries (in the context of compressed text indexing), since many gap sizes are small in

our distributions.

3.2.2 Empirical Distribution of RLE Values and γ Codes

To validate our choice of using RLE+γ encoding, we generated real data sets for succinct

dictionaries and performed experiments, comparing the space occupancy of several different

encodings instead of the γ code. We took text files from the Canterbury and Calgary

Corpora [Can], obtained their Burrows-Wheeler transform (bwt), performed the wavelet
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tree construction on the bwt according to the text indexing structure of [GGV03], and

recorded the sets of integers that need to be stored succinctly. On these sets, we ran the

experiments summarized in Table 3.2 and Table 3.3. We measured the total amount of bits

required by every encoding for each text file and divided that amount by the length of each

file; hence, the values in the tables are the bits per symbol (bps) required by each encoding

method.

For Table 3.2, each encoding scheme is used in conjunction with RLE to provide the

results in the table. (We also report Gap+γ for comparison purposes.) Gol refers to the

Golomb code, and uses the median value as its parameter b. Manis refers to the Maniscalco

code [Nel] that is tailored for use with RLE in bwt. Ber is the skewed Bernoulli model with

the median value as its parameter b. MixBer uses just one bit to encode gaps of length

1, and for other gap lengths, it uses one bit plus the Ber code. This experiment shows

that the underlying distribution of gaps in our data is Bernoulli. (When b = 1, the skewed

Bernoulli code is equal to γ.) Notice that, except for random.txt, γ codes are less than

1 bps from E(L). For random text, γ codes do not perform as well as expected. E(G)

and Gap+γ outperform their respective counterparts on random.txt, which represents the

worst case for RLE. Finally, we do not get improved results by using RLE and δ codes

as shown in Table 3.2, namely just E(L) +
∑j

i=1blg lg(2`i)c bits by Fact 2. Although γ

coding requires 2E(L) − t bits, it outperforms δ in practice, since γ is more efficient for

small run-lengths. Table 3.2 suggests γ as best encoding to couple with RLE.

A natural question arises as to the choice of the simplistic γ encoding, since theoretically

speaking, a number of other prefix codes (δ, ζ, and skewed Golomb, for instance) outperform

γ codes. However, γ encoding seems extremely robust according to the experiments above.

We consider further comparisons with fractional coding and Huffman prefix codes [WMB99]

in Table 3.3. In the table, the fourth column reports the bps required for the γ code in

which any run-length other than 1 is encoded using γ, whereas a sequence of s 1s is encoded

with the γ code for 1 followed by the γ code for s; the fifth to Moffat’s arithmetic coder in

Section 3.2.3; the sixth column refers to the Huffman code in which the cost of encoding
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File E(L) E(G) RLE+γ Gap+γ RLE+δ Gol Manis Ber MixBer

book1 1.650 2.736 2.597 3.367 2.713 20.703 20.679 2.698 2.721

bible.txt 1.060 2.432 1.674 2.875 1.755 15.643 16.678 1.726 1.738

E.coli 1.552 1.591 2.226 2.190 2.520 2.562 2.265 2.448 2.238

random.txt 5.263 4.871 8.729 6.761 8.523 25.121 18.722 8.818 8.212

Table 3.2: Comparison of various coding methods when used with run-length (RLE)

and gap encoding for each file listed. Unless stated otherwise, the listed coding

method is used with RLE. The files indicated are from the Canterbury Corpus [Can].

The values in the table are the bits per symbol (bps) required by each method.

the (large!) prefix tree is not counted (which explains its size being smaller than that of the

arithmetic code). The last two columns refer to the rangecoder mentioned in Section 3.2.3,

where we employ either a fixed slack parameter a = 0.88 or choose the best value of a

adaptively. These results reinforce the observation that γ encoding is nearly the best.

In Section 3.2.3, we formalize this experimental finding more clearly by curve-fitting the

distribution implied by γ onto the distribution of the run-lengths.

Improving upon γ to encode these RLE values requires a significant amount of work

with more complicated methods. For the purposes of illustration, consider the comparison

of γ encoding to that of an optimal Huffman encoding, given in Table 3.3. The γ code differs

from Huffman encoding by at most 0.1 bps (except for random.txt, where the difference

is 0.8 bps), and as such, this means that the majority of RLE values are encoded into

codewords of roughly the same length by both Huffman and γ encoding. This news is both

encouraging and discouraging. It seems that there is no real hope to improve upon γ using

prefix codes, since Huffman codes are optimal prefix codes [WMB99]. Further improvement

then, in some sense, necessitates more complicated techniques (such as arithmetic coding),

which have their own host of difficulties, most often a greatly increased encoding/decoding

time.
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File γ δ γ+escape arithm. Huffman a = 0.88 adaptive a

alice29.txt 2.3527 2.5816 2.5934 2.4964 2.3296 2.3247 2.3272

asyoulik.txt 2.6304 2.9104 2.9129 2.7324 2.5946 2.5875 2.5873

bible.txt 1.6109 1.7677 1.7839 1.8190 1.5963 1.5901 1.5903

cp.html 2.6949 2.9554 2.9310 2.7170 2.6487 2.6465 2.6543

fields.c 2.4387 2.6145 2.5894 2.4645 2.3228 2.4186 2.4186

grammar.lsp 2.8121 3.0636 2.9948 2.9282 2.6694 2.7648 2.7648

kennedy.xls 1.4269 1.6051 1.4718 1.6834 1.3521 1.3998 1.3968

lcet10.txt 2.0933 2.2902 2.3047 2.1727 2.0736 2.0650 2.0684

plrabn12.txt 2.4686 2.7469 2.7521 2.6591 2.4354 2.4277 2.4269

ptt5 0.7731 0.8600 0.8617 0.9983 0.7613 0.7582 0.7580

random.txt 6.7949 7.9430 7.7460 6.1273 6.0004 6.5210 6.4187

sum 2.9500 3.2324 3.1803 2.9184 2.8765 2.8792 2.8698

world192.txt 1.4699 1.5890 1.6095 1.5815 1.4555 1.4540 1.4550

xargs.1 3.3820 3.7303 3.6564 3.3763 3.3068 3.3404 3.3404

Table 3.3: Comparison of various coding methods when used with run-length (RLE)

encoding. The files indicated are from the Canterbury and Calgary Corpora [Can].

The values in the table are the bits per symbol (bps) required by each method.

3.2.3 Statistical Evidence Justifying γ Codes

We motivate our choice of γ encoding more formally, with statistical evidence suggesting

that the underlying distribution of RLE values matches the distribution that the γ code

(or equivalently Bernoulli, with b = 1) encodes optimally. For instance, consider the em-

pirical cumulative distribution of the RLE values for bible.txt, shown in Figure 3.1. This

distribution is fitted by the function

cdf (x) = e−a/x x ∈ N+, (3.3)

where parameter a ∈ R+ is a constant depending on the data file. For instance, in the

Canterbury Corpus, we observe that a ∈ [0.5, 1.8], depending on the file (e.g., a = 0.9035

for bible.txt). We compute the derivative of cdf as if it were a continuous function and
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Figure 3.1: The x axis shows the distinct RLE values for bible.txt in increasing

order. Left: The empirical cumulative distribution together with our fitting function

cdf from (3.3). Center: The empirical probability density function together with our

fitting function pdf from (3.4). Right: The empirical probability density function

together with the fitting function 6
π2·x2 , where 6

π2 = 1
P

∞

i=1
1/i2

is the normalizing factor.

we obtain the probability density function

pdf (x) =

(

ae−a/x

x2

)
/
(

∞∑

i=1

ae−a/i

i2

)

, i, x ∈ N+, a ∈ R+ (3.4)

where the term
∑∞

i=1
ae−a/i

i2
is the normalization factor. As one can see from Figure 3.1,

function (3.4) fits the empirical probability density of the RLE values for bible.txt ex-

tremely well, suggesting that approximating the cdf by a continuous function incurs negli-

gible error.1

Since pdf (x) ∼ 1
x2 as x approaches infinity, we have

lim
x→∞

e−a/x = 1⇒
(

ae−a/x

x2

)
/
(

∞∑

i=1

ae−a/i

i2

)

≈ 1

x2
.

Since the γ code is optimal for distributions proportional to 1/x2, we finally have some

reasonable motivation for the success of the γ code on an RLE stream. However, these

results only indicate the measure of success on prefix codes; encodings which can assign

fractional bits may yet yield significant improvement.

1We employed the matlab function called LSQCurvefit, which finds the best fitting function in

terms of the least square error between the function and the raw data to be approximated.
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We performed various tests with Moffat’s implementation of an arithmetic coder,2 but

the results were not satisfying when compared with the γ code. To resolve this problem,

we use the statistical model of cdf to tailor an arithmetic coder to perform well on RLE

values. Recall that both pdf and cdf depend on the knowledge of the parameter a in

formula (3.3), which in turn depends on the file being encoded. (We ran experiments with

a fixed a = 0.88, which also yielded good results on most files that we tested.) To this end,

we take a fast (and free) arithmetic-style coder used in szip called range coder [Sch]. We

encode the RLE length ` by assigning it an interval of length cdf (`+1)− cdf (`) = pdf (`).3

With this kind of compressor, we improve the compression ratio by 1–5% with respect

to γ encoding. (See Table 3.3 for the comparison.) We then transform our arithmetic

compressor so that the parameter a could be changed adaptively during execution, hoping

for a better compression ratio. We need a cue to infer a from the values already read, so

we use a maximum likelihood estimation (MLE) algorithm.

The main hurdle to simply using a maximum likelihood estimator (MLE) is its assump-

tion of independent trials. (In our terminology, this assumption would imply that each

run-length ` is independently drawn from its pdf.) We compute the (normalized) autoco-

variance of the RLE values to get an idea of “how independent” our RLE values are. This

method is widely adopted in signal theory [AUT] as a good indicator of independence of

a sequence of values, though it does not necessarily imply independence. In our case, the

correlation between consecutive RLE values is very low for the files in Canterbury corpus,

which again, though it does not imply independence in the strict sense, is a strong indica-

tion nonetheless. With this observation in mind, we assume statistical independence of the

RLE values in order to define the likelihood function

2The code (written in Java at <http://mg4j.dsi.unimi.it>) is inspired by the arithmetic coder

of J. Carpinelli, R. M. Neal, W. Salamonsen, and L. Stuiver, which is in turn based on [MNW98].

3This encoding appears to be faster than using the cumulative counts of the frequency of values

already scanned, like other well-known arithmetic coders.
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lx(a, x1, . . . , xk) =

k∏

i=1

pdf (xi) =

(
k∏

i=1

ae−a/xi

x2
i

)(
∞∑

i=1

ae−a/i

i2

)−k

.

We want to find the value of a where lx reaches its maximum. Equivalently, we can find

the maximum of lg lx(a, x1, . . . , xk) = Lx(a, x1, . . . , xk). We differentiate Lx with respect

to a and get

− ∂

∂a
lg

(
∞∑

i=1

e−a/i

i2

)

=
1

k

k∑

i=1

1

xi
= H(x)−1,

where H(x) is the Harmonic mean of the sequence x. By denoting the left hand term

by f(a), we have a = f−1
(
H(x)−1

)
. Unfortunately, f(·) is not an analytical function

and is very difficult to compute, even for fixed a. For instance, when a = 0, we have

f(a) = ζ(3)
ζ(2) = 0.7307629, where ζ(·) is the Riemann Z function. We apply numerical meth-

ods to approximate the function for a ∈ [0.5, 1.8] (which is the range of interest for us).

Surprisingly, all this work leads to a small improvement with respect to the non-adaptive

version (where a = 0.88). Looking again at Table 3.3, the improvement is negligible, rang-

ing from 1–2% at best. The best case is the file random.txt (in the Calgary corpus), for

which the hypothesis of independence of RLE values holds with high probability by its very

construction.

3.2.4 Fast Access of Experimental-Analysis-Driven Dictio-

naries

In this section, we focus on the practical implementation of our scheme that encodes the

conceptual bitvector BD by RLE+γ encoding and uses additional directories on this en-

coding to support fast access. In particular, we propose a simplified version that exploits

the specific distribution of run-lengths when dictionaries are employed for text indexing

purposes. Our dictionaries support rank and select primitives in O(lg t) time (with a very

small constant) to obtain low space occupancy for our dictionary D seen as a bitvector BD

(with t 1s). We represent BD by the vector of run-length values L = {`1, `2, . . . , `j} (with

j ≤ 2t and
∑

i `i = n) , where either BD = 1`10`21`3 . . . or BD = 0`11`20`3 . . .. (We use a
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single extra bit to denote which case occurs.)

(1) Let γ(x) denote the γ code of the positive integer x. We store the stream γ(`1) ·

γ(`2) · · · γ(`j) of encoded run-lengths. We store the stream in double word-aligned form.

Each portion of such an alignment is called a segment, is parametric, and contains the

maximum number of consecutive encoded run-lengths that fit in it. We pad each segment

with dummy 1s, so that they all have the same length of O(1) words. (This padding adds a

total number of bits which is negligible.) Let S = S1 ·S2 · · ·Sk be the sequence of segments

thus obtained from the stream.

(2) We build a two-level (and parametric) directory on S for fast decompression.

• The bottom level stores |Si|0 and |Si|1 for each segment Si, where |Si|0 (respectively,

|Si|1) denotes the sum of run-lengths of 0s (respectively, 1s) relative to Si. We store

each value of the sequence |S1|0, |S1|1, |S2|0, |S2|1, . . . , |Sk|0, |Sk|1 using byte-aligned

codes with a continuation bit. We then divide the resulting encoded sequence into

groups G1, G2, . . . , Gm, each group containing several values of |Si|0 and |Si|1 for

consecutive values of i. The size of each group is O(1) words.

• The top level is composed of two arrays (A0 for 0s, and A1 for 1s) of word-aligned

integers. Let |Gj |0 (respectively, |Gj |1) denote the sum of run-lengths of 0s (respec-

tively, 1s) relative to Gj . The ith entry of A0 stores the prefix sum
∑i

j=1 |Gj |0. The

entries of A1 are similarly defined. We also keep an array of pointers, where the

ith pointer refers to the starting position of Gi in the byte-aligned encoding at the

bottom level (since the first two arrays can share the same pointer). To perform the

binary search in A0 or A1, we require O(lg t) time. All other work (accessing the

array of pointers and traversing the bottom level) is O(1) time.

The implementation of rank and select follows the same algorithmic structure. For

example, to compute select1(x) we perform a binary search in A1 to find the position j

of the predecessor x′ = A1[j] of x. (Interpolation search does not help in practice to

get O(lg lg t) expected time in this case.) Then, using the jth pointer, we access the byte-

aligned codes for group Gj and scan Gj sequentially with partial sums looking at O(1) |Si|0
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and |Si|1 values until we find the position of the predecessor x′′ for x − x′ inside Gj . At

that point, a simple offset computation leads to the correct segment Si (due to our padding

with dummy bits). We scan the O(1) words of Si to find the predecessor of x − x′ − x′′

in Si. We accumulate the partial sum of bits that are to the left of this predecessor. This

sum is the value to be returned as select1(x). In rank , we reverse the role of the partial

sums in how they guide the search, but the search is largely the same.

As should be clear, the access is constant-time except for the binary search in A0

or A1. In Section 3.3, we will organize many of these dictionaries into a tree of dictionaries,

performing a series of select operations along an upward traversal of p nodes/dictionaries in

the tree. Since we need to perform a binary search in each of these p dictionaries, we obtain

a cost of O(p lg t) time. This cost is prohibitive: we now describe a method to reduce the

time to O(p + lg t) using an idea similar to fractional cascading [CG86].

Suppose dictionary D is the child of dictionary D ′ in the tree. Suppose also that we

have just performed a binary search in A0 of D. We can predict the position in A0 of D′ to

continue searching. So instead of searching from scratch in A0 of D′, we retain a shortcut

link from D to indicate the next place to search in A0 of D′, with a constant number of

additional search steps. Thus, the binary search in p dictionaries along a path in the tree

will be costly only for the first node in the path (the root). This approach requires an

additional array of pointers for the shortcut links, though as we will show in Section 3.4.4,

the additional space required can be made negligible in practice.

3.3 Review of Wavelet Trees

In this section, we review the wavelet tree from Section 2, which forms the basis for both

our indexing and compression methods. The wavelet tree reduces the redundancy inherent

in maintaining separate dictionaries for each symbol appearing in the text; each successive

dictionary only encodes those positions not already accounted for previously. Encoding

the dictionaries this way achieves the high-order entropy of the text. However, the lookup
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 ipssm#pissii
0100010010011

 pss#pss
00001000

 imiii
001000

 psspss
0011011

p s

# i m

p s

# i m

 ipssm#pissii
1 1 3 1 2 1 2 2

 pss#pss
4 1 3

 imiii
2 1 3

 psspss
2 2 1 2

1 1 011 1 010 1 010 010 00100 1 011 010 1 011 010 010 1 010
1 1 3   1 2   1 2   2   4     1 3   2   1 3   2   2   1 2

Figure 3.2: Left: an example wavelet tree. Right: an RLE encoding of the wavelet

tree. Bottom: actual encoding in memory of the right tree in heap layout with γ

encoding.

time for a particular item could be linear in the number of dictionaries, as a query must

backtrack through all the previous dictionaries to reconstruct the answer. The wavelet tree

relates a dictionary to an exponentially growing number of dictionaries, rather than simply

all prior encoded dictionaries. Consider the example wavelet tree in Figure 3.2 (which we

have augmented to explain some practical considerations as well), built on the bwt of the

text mississippi#, where # is an end-of-text symbol.

We implicitly associate each left branch with a 0 and each right branch with a 1. Each

internal node u is a dictionary with the elements in its left subtree stored as 0, and the

elements in its right subtree stored as 1. For instance, consider the leftmost internal node

in the left tree of Figure 3.2, whose leaves are p and s. The dictionary (aside from the

leading 0) indicates that a single p appears in the bwt string, followed by two s’s, and so

on. We don’t actually store the leaves of the wavelet tree; we have included them here for

clarity. The second tree indicates an RLE encoding of the dictionaries, and the bottom

bitvector indicates its actual storage on disk in heap layout with a γ encoding of the run-

lengths described previously. The leading 0 in each node of the wavelet tree creates a

unique association between the sequence of RLE values and the bitvector.

110



www.manaraa.com

Since there are at most |Σ| dictionaries (one per symbol), any symbol from the text can

be decoded in just O(lg |Σ|) time by using a balanced wavelet tree. This functionality is

also sufficient to support multikey rank and select , which we support for any symbol c ∈ Σ.

See [GGV03] for further discussion of the wavelet tree.

We introduce two improvements for further speeding up the wavelet tree—use of frac-

tional cascading and adoption of a Huffman prefix tree shape. First, we implement shortcut

links for fractional cascading as described at the end of Section 3.2.4. Second, we minimize

access cost to the leaves by rearranging the wavelet tree. One can prove that theoreti-

cally, the space occupancy of the wavelet tree is oblivious to its shape [GGV03]. (We defer

the details of the proof in the interest of brevity, though the reader may be satisfied with

the observation that the linear method of evaluating dictionaries is nothing more than a

completely skewed wavelet tree.)

We performed experiments to verify the truth of this theoretical observation in practice.

Briefly, we generated 10, 000 random wavelet trees and computed the space required for

various data. Our experiments indicated that a Huffman tree shape was never more than

0.006 bps more than any of our random wavelet trees. Those savings were less than a 0.1%

improvement in the compression ratio with respect to the original data. Most generated

trees (over 90%) were actually worse than our baseline Huffman arrangement, and did not

justify the additional computation time.

Since the shape does not seem to affect the space required, we can organize the wavelet

tree to minimize the access cost (for instance), under the assumption that the distribution

of calls to the wavelet tree is known a priori. To describe the above more formally, let f(c)

be the estimated number of accesses to leaf c ∈ Σ in the wavelet tree (which again is

not stored explicitly). We build an optimal Huffman prefix tree by using f(c) as the

probability of occurrence for each c. It is well-known that the depth of each leaf is at most

1+lg
∑

x f(x)/f(c), which is nearly the optimal average access cost to c. Thus, on average,

we require 1 + lg
∑

x f(x)/f(c) calls to rank or select involving leaf c.

Lemma 27. Given a distribution of accesses to the wavelet tree in terms of the estimated
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Huffman Cascading bible.txt book1

No No 1.344 1.249

No Yes 1.269 1.296

Yes No 1.071 0.972

Yes Yes 1.000 1.000

Table 3.4: Effect on performance of wavelet tree using fractional cascading and/or

a Huffman prefix tree shape. The columns for Huffman and Cascading indicate

whether that technique was used in that row. The values in the table represent a

ratio of performance normalized with the case in the last row. (Lower numbers are

better.)

number f(c) of accesses to each leaf c, we can shape it so that the average access cost to

leaf c is at most 1 + lg
∑

x f(x)/f(c). The worst-case space occupancy of the wavelet tree

does not change as a result of this change of shape.

In the experiments below, we make the empirical assumption that f(c) is the frequency

of c in the text (other metrics are equally suitable as seen in Lemma 27), reducing the

weighted average depth of the wavelet tree to H0 ≤ lg |Σ|. We performed experiments to

demonstrate the effectiveness of fractional cascading and the Huffman-style tree shaping.

Some results are summarized in Table 3.4. Each row contains one of the four possible cases

indicating whether Huffman (first column) and fractional cascading (second column) were

used. The last two columns report the corresponding timings for two text files, obtained by

decompressing the entire file using repeated calls to the wavelet tree. This method is not

the most efficient way to decompress a file, but it does give a good measure of the average

cost of a call to the wavelet tree. Timings are normalized with the case in the last row. As

can be seen from the data, fractional cascading does not always improve the performance,

while Huffman shaping gives a respectable improvement.

The resulting wavelet tree is itself an index that achieves 0-order compression and allows
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decoding of any symbol in O(H0) expected time. In particular, it’s possible to decompress

any substring of the compressed text using just the wavelet tree. This structure is a perfect

example where indexing is compression. We performed some experiments to evaluate the

0-order compression of wave, obtained by using the RLE+γ encoding with the wavelet tree.

We do not add additional structures supporting fast access in wave.

We obtained the figures reported in Table 3.5 for some text files from the Canterbury

and Calgary Corpora [Can], and some new files available on TREC Tipster 3 [Tip]. Our

results for wave are in the second column. The arithmetic code [RL79] gives better results

than wave when run on the same files, as reported in the third column arit. The next five

columns report the figures for other compressors on the same files. In these columns, bzip2

version 1.0.2 is the Unix implementation of block sorting based on the Burrows-Wheeler

transform; gzip is version 1.3.5; lha is version 1.14i [lha]; and vh1 is Karl Malbrain and

David Scott’s implementation of Jeffrey Scott Vitter’s dynamic Huffman codes; zip is

version 2.3. Note that a direct comparison of the methods may not be meaningful in some

cases because of different parameters; for example, bzip2 works on blocks of 900Kb and

book1 is the only file within this size (768771 bytes). The purpose of Table 3.5 is to show

that wave is not particular efficient as a 0-order compressor when applied directly to a

text file. Surprisingly, when applied to the bwt stream obtained from that file (denoted

wzip), its performance improves a lot with respect to wave, as shown in the last column of

Table 3.5.

The lesson learned so far suggests that the wavelet tree, coupled with RLE and γ encod-

ing, is a simple but effective means for compressing the output of block-sorting transforms

such as bwt.

3.3.1 Efficient Construction of the Wavelet Tree

In this section, we discuss efficient methods of constructing our wavelet tree. In particular,

we detail an algorithm to create the wavelet tree in just O(n + min(n, nHh)× lg |Σ|) time.

Directories that enable fast access to our wavelet tree can be created in the same time.

113



www.manaraa.com

File wave arit bzip2 gzip lha vh1 zip wzip

book1 5.335 4.530 2.992 2.953 2.967 4.563 2.954 2.619

bible.txt 5.004 4.309 1.931 1.941 1.939 4.353 1.941 1.631

E.coli 2.248 2.008 2.189 2.337 2.240 2.246 2.337 2.181

world192.txt 5.572 3.043 1.736 1.748 1.743 5.031 1.749 1.519

ap90-64.txt 5.392 4.913 2.189 2.995 2.862 4.938 2.995 1.668

Table 3.5: Wavelet tree with RLE+γ encoding as a plain 0-order compressor (column

wave) and applied to the bwt stream (column wzip). Remaining columns are for other

compressors. The values in the table are in bits per symbol (bps).

We can add these directories to our wzip format for fast access. We now describe wzip in

detail. The header for wzip contains three basic pieces of information: the text length n,

the block size b, and the alphabet size Σ. The body of the encoding is then dn/be blocks,

each block encoding b contiguous text symbols (except possibly the last block). Recall that

the nodes of the wavelet tree are stored in heap ordering (example in Figure 3.2). We break

this stream into blocks and encode it. The format for a block is given below:

• A (possibly compressed) bitvector of |Σ| bits that stores the symbols actually occur-

ring in the block. Let σ ≤ |Σ| be the number of symbols present. (For large Σ, we

may store the bitvector in the header, with smaller bitvectors in the blocks that refer

only to the symbols stored in the bitvector in the header).

• The dictionaries encoded with RLE+γ, concatenated together according to heap

order. The wavelet tree has σ implicit leaves and σ−1 internal nodes with dictionaries.

(See Figure 3.2 for an example.)

We do not need to store the length of each encoding, as it is already implicitly encoded.

When processing, the encoding for the root node of the wavelet tree ends when the sum of

the encoded RLEs equals n. (These run-lengths may be spread over several blocks.) At this

point, we know the total number of 0s and 1s, plus the (dummy) leading 0. The number

of 0s is the sum of the RLE values in the left child of the root, and the number of 1s is the
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sum of the RLE values in the right child of the root. We can go on recursively this way,

down to the implicit leaves, from which we can infer the frequency of the occurrences of

each symbol in the block.

3.3.2 Compression with bwt2wzip

In this section, we describe our compression method bwt2wzip, which takes as input the bwt

stream (the Φ function in [GGV03]) of the file and compresses it efficiently using our wavelet

tree techniques. Our approach introduces a novel method of creating the wavelet tree in

just O(n+min(n, nHh)× lg |Σ|) time, which is also faster in practice, as the entropy factor

can significantly lower the time required. This behavior relates the speed of compression

to the compressibility of the input. Thus, we introduce a new consideration into the notion

of compressibility—highly compressible data should be easier to handle, both in terms of

space and time.

If we were to build the wavelet tree naively from the bwt stream, we would run multiple

scans on the bwt to set up the bitvector in each individual node of the wavelet tree. Then,

we would compress the resulting dictionaries with RLE+γ encoding. A single-scan method

is made possible by placing one item at a time in each of the internal nodes from its root-

to-leaf path via an upward walk. Given any internal node in the tree, the set of values

stored there are produced in increasing order, without explicitly creating the corresponding

bitvector. Since processing each symbol in the bwt could take up to O(lg |Σ|) time, it

requires O(n lg |Σ|) time in total. We describe a refinement of this construction method

requiring O(n + min(n, nHh) × lg |Σ|) time. This method is faster in practice, since the

entropy factor can significantly lower the time required for compressible text.

Let c be the current symbol in the bwt stream, and let u be its corresponding leaf in

the wavelet tree. (Recall that the numbering of internal nodes follows the heap layout.)

While traversing the upward path in the wavelet tree to the root, we decide whether the

run of bits in the current node should be extended or switched (from 0 to 1 or vice versa).

However, we do not perform this task individually for each symbol. Instead, we process
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consecutive runs of equal symbols c, say rc in number, in the input simultaneously. We

then extend the runs in each internal node of the wavelet tree rc units at a time. Let nr

be the number of such runs that we process for the entire bwt stream.

To make things more concrete, we use the following auxiliary information to compress

the input string bwt. Notice that the leaves of the wavelet tree are not explicitly represented;

given a symbol c ∈ Σ, it suffices to know its leaf number leaf[c]. We also allocate enough

space for the dictionaries dict[u] of the internal nodes u. We keep a flag bit[u] for each

internal node u, which is 1 if and only if we are currently encoding a run of 1s in u. Below,

we describe and comment the main loop of the compression. We do not specify the task of

encoding the RLE values with γ codes, as it is a standard computation performed on the

dictionaries dict[u] of the internal nodes u.

1 while ( bwt != end ) {

2 for ( c = *bwt, r_c = 1; bwt != end && c == *(++bwt); r_c++ ) ;

3 u = leaf[c];

4 while ( u > 1 ) {

5 if ( (u & 0x1) != bit[u >>= 1] ) {

6 bit[u] = 1 - bit[u]; *(++dict[u]) = 0; }

7 *(dict[u]) += r_c;

8 }

9 }

We scan the input symbol c from the current position in the bwt to determine rc, the

length of the run of c (line 2). We determine the heap number of the (virtual) leaf u

associated with c (line 3) and start an upward traversal (lines 4–7). We close the run in

the current node u and start a new run in the following two cases:

1. We arrive from the left child of u and the current run in u is made up of 1s; or

2. We arrive from the right child of u and the current run in u is made up of 0s.

We express this condition succinctly in line 5, where (u & 0x1) is 1 when u is a right child,

and u >>= 1 denotes u’s parent whose flag bit indicates if the current run is of 1s. We
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complement its value and prepare for the next entry in the current dictionary (line 6). We

then extend the current run-length by rc (line 7). We exit the loop at the root (when u = 1

in line 4).

The time required to perform these actions over the whole bwt input stream is O(n)

to scan the bwt stream, and O(nr × lg |Σ|), to perform the nr traversals of the wavelet

tree, taking O(lg |Σ|) time. It turns out that the number of runs nr processed by our

algorithm is nr = O(min(n, nHh)), proving our bound. Since nr ≤ n trivially, we show

that nr = O(nHh), thus capturing precisely the high-order entropy of the text. Note that nr

is asymptotically upper-bounded by the number of runs nd in all of the dictionaries of the

internal nodes in the wavelet tree. This bound holds, since either the beginning or the end

of a run in the bwt stream must correspond to the beginning or the end (or vice versa)

of at least one distinct run in a dictionary. (Otherwise, we could extend the run in the

bwt stream, except possibly for the first or the last run). Thus, nr = O(nd). Since each

run length will require at least one bit to encode (i.e., lb(`) ≥ 1 for any ` ≥ 1), we can

simply bound the sum of the logarithm of their run-lengths. Theorem 16 proves that a

single wavelet tree encoded with RLE+γ achieves O(nHh) bits of space, thus proving that

nr = O(nHh). The proof technique makes use of the framework in [GGV03], and is proved

in Section 3.4.2.

3.3.3 Decompression with wzip2bwt

Decompression is a fairly straightforward task once the encoding has been done, though

some care must be taken when decomposing sets of runs. The decompression algorithm first

performs a downward traversal to identify the symbol c to decompress. It then performs an

upward traversal, analogous to that in bwt2wzip, except that it decrements the RLE values

by rc, producing in output rc instances of c. However, the value of rc is not necessarily

the last RLE value examined along this path; rather it is the minimum among them. The

reason stems from the fact that the runs in the dictionaries in the internal nodes (except

for the root) may correspond to a union of runs that were disjoint in the input string bwt.
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Fortunately, the minimum value among those in an upward traversal from a leaf refers to

an individual run in the bwt stream, and it is the value rc.

To decompress, we use auxiliary information in bwt2wzip, a variable alphabetsize

and an array symbol. The former denotes the actual number of symbols in the bwt stream;

the symbols are numbered from 0 to alphabetsize - 1. To recover the original value, we

remap them using array symbol. We now comment on our main loop for decoding. (Again,

we do not describe how to decode the RLE values with the γ code, as it is a standard task.)

1 while( r_c = *(dict[u=1]) ) {

2 while ( (u = (u << 1) | bit[u]) < alphabetsize )

3 if ( *(dict[u]) < r_c ) r_c = *(dict[u]);

4 c = u - alphabetsize;

5 while ( u > 1 )

6 if ( !(*(dict[u >>= 1]) -= r_c) ) {

7 bit[u] = 1 - bit[u]; ++dict[u]; }

8 for( c = symbol[c]; r_c--; *(bwt++) = c ) ;

9 }

We start with the RLE value in the dictionary of the root (u = 1 in line 1). We perform

the downward traversal (line 2), guided by the current run of 1s or 0s, looking at the flag

bit[u] to branch either to the left (bit[u] = 0) or the right (bit[u] = 1) in the heap layout.

We also keep the minimum RLE value in rc (line 3), as previously mentioned. When we

reach a leaf, we find the rank of the symbol to decode (line 4). Note that lines 4 and 8

are the analogue of line 2 in bwt2wzip, except that we output symbol c after remapping

it, with symbol in the current position indicated by the bwt stream. The upward traversal

in lines 5–7 is similar to the downward traversal in lines 4–7 of bwt2wzip, except that we

decrease the RLE values in the dictionaries. The time required for decompression follows

the same argument as for compression.
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3.3.4 Performance and Experiments for wzip

In this section, we discuss our experimental setup and detail our results for the speed

of access of our compression algorithm. We used several platforms to test our algorithms:

ATH = Athlon AMD 1GHz 512MB Linux, gcc version 3.3.2 (Debian); AXP = AMD Athlon

XP 1.8GHz 512MB Linux, gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5); PIII = Intel

Pentium III 1GHz 512MB Windows XP, gcc version 3.2 (mingw special 20020817-1); PIV

= Pentium IV 2GHz 1GB Windows XP, gcc version 3.2 (mingw special 20020817-1); and

XEO = Intel Xeon 2GHz 2GB Linux, gcc version 3.3.1 20030626 (Debian prerelease). We

drew our data from the Canterbury and Calgary corpora. The first three rows of Table 3.6

are files from those corpora; the last two rows are the concatenation of all the files in the

same.

We compare our performance with a simple routine that copies the input bwt stream

into another array. We normalize the timings of our routines with respect to this simple

copy operation. We don’t compare with the scan operation, as the compiler often cheats

and doesn’t generate code to scan for an empty loop. In our experiments, bwt2wzip (com-

pression) is 2—6 times slower than a simple copy operation, and wzip2bwt (decompression)

is 3—7 times slower. The difference in performance depends mainly on the architecture of

the processor rather than the input file. (Consult Table 3.6 for proof of this fact, with bold

figures for the minimum and the maximum.) The computation of RLE takes roughly 30%

of the total time in bwt2wzip and 40% in wzip2bwt.

With regard to fine tuning performance in the code for bwt2wzip and wzip2bwt, each

time we access an entry pointed to by dict[u], we may initiate a cache miss. Also, we

need to pre-allocate more space to accommodate all the dictionaries (whose final size is

known only at the end of the compression, which is too late). We alleviate this problem

by synchronizing the access to the decoded RLE values. In particular, we can provide the

same access pattern during the execution of bwt2wzip and wzip2bwt. Some care must be

taken at initialization to maintain this information.

Consequently, the RLE values are scrambled among the dictionaries and follow the
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bwt2wzip wzip2bwt

File ATH AXP PIII PIV XEO ATH AXP PIII PIV XEO

ap5.txt 4.811 2.822 2.244 4.878 5.250 6.736 4.200 3.438 6.232 6.500

bible.txt 4.093 2.688 2.162 3.473 4.370 5.302 3.656 2.910 4.746 5.037

world95.txt 3.077 2.375 1.946 2.705 3.800 3.744 3.167 2.698 3.750 4.450

calgary 4.465 3.481 2.566 4.162 5.565 6.256 5.148 3.939 5.643 6.826

canterbury 4.419 3.091 2.324 3.255 5.625 5.839 4.318 3.522 4.614 6.625

Table 3.6: Running times for bwt2wzip and wzip2bwt normalized with that of a

simple copy routine. File sizes in bytes are 5,000,000 for ap5.txt, 4,047,392 for

bible.txt, 2,899,483 for world95.txt, 3,215,493 for calgary, and 2,810,784 for

canterbury.

access pattern of wzip2bwt. To solve this problem, we no longer keep a pointer in dict[u];

instead, we temporarily store the current RLE value for u. As a result, except for dict[u],

bit[u], and symbol, access to the other structures is sequential, which enables us to exploit

the many levels of cache. Moreover, we do not need to allocate temporary storage to keep

the RLE values that we will encode. Rather, we can produce each RLE value and encode it

on the fly. A drawback of this approach is that we lose compatibility with the text indexing

functionalities in Section 3.4.

It is worth noting that the total cost of compression and decompression is much larger

than what we discussed so far. We must also account for the cost of suffix sorting to obtain

the bwt stream from the input text file (in addition to that of bwt2wzip) and the cost of

obtaining the text file from the bwt stream (in addition to that of wzip2bwt).

3.4 Practical Suffix Arrays:

Indexing Equals Compression

We explored dictionary methods which perform well in practice. Now, we apply these

dictionary methods to compressed suffix arrays [GGV03, GV05, Sad03, Sad02b] and show
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both experimental success as well as a theoretical analysis of these practical methods. First,

we provide some background notions from [GV05, GGV03].

3.4.1 Compressed Suffix Arrays (CSA)

To recap, a standard suffix array [GBS92, MM93] is an array containing the position of

each of the n suffixes of text T in lexicographical order. In particular, SA[i] is the starting

position in T of the ith suffix in lexicographical order, T
[
SA[i], n

]
. The size of a suffix

array is Θ(n lg n) bits, as each of the positions stored uses lg n bits. A suffix array allows

constant time lookup to SA[i] for any i. The compressed suffix array [GV05] contains the

same information as a standard suffix array.

Definition 3. Given a text T of length n, a compressed suffix array [GV05, Sad03, Sad02b]

for T supports the following operations without requiring explicit storage of T or its (in-

verse) suffix array:

• compress produces a compressed representation that encodes (i) text T , (ii) its suffix

array SA, and (iii) its inverse suffix array SA−1;

• lookup in SA returns the value of SA[i], the position of the ith suffix in lexicographical

order, for 1 ≤ i ≤ n; lookup in SA−1 returns the value of SA−1[j], the rank of the jth

suffix in T ;

• substring decompresses the portion of T corresponding to the first c symbols (a prefix)

of the suffix in SA[i], for 1 ≤ i ≤ n and 1 ≤ c ≤ n− SA[i] + 1.

The data structure is recursive in nature, where each of the ` = lg lg n levels indexes

half the elements of the previous level. Hence, the kth level indexes nk = n/2k elements.

The recursive decomposition is given below:

1. Start with SA0 = SA, the suffix array for text T .

2. For each 0 ≤ k < lg lg n, transform SAk into a more succinct representation through

the use of a bitvector Bk, rank function rank (Bk, i), neighbor function Φk, and SAk+1

(representing the recursion).
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3. The final level, ` = lg lg n is written explicitly, using n bits.

SAk is not explicitly stored (except at the last level `), but we refer to it for the sake

of explanation. Bk is a bitvector such that Bk[i] = 1 if and only if SAk[i] is even. Even-

positioned suffixes are divided by 2 and represented in SAk+1. In order to retrieve odd-

positioned suffixes, we employ the neighbor function Φk, which maps a position i in SAk

containing the value p into the position j in SAk containing the value p + 1. We describe

it by the following formula (also handling the case when SAk[i] = n):

Φk(i) =
{

j such that SAk[j] = (SAk[i] mod n) + 1

}

. (3.5)

A lookup for SAk[i] can be answered in the following way:

SAk[i] =







2 · SAk+1

[
rank (Bk, i)

]
if Bk[i] = 1

SAk

[
Φk(i)

]
− 1 if Bk[i] = 0.

The representation of Bk and rank (Bk, i) uses standard techniques and is easy to com-

press. The major hurdle for compression remains in the representation of Φk, which is at

the heart of compressed suffix arrays and indexing in general. The key to the compression

of Φk (which leads to a bound in terms of nHh) is that we can partition the function Φk into

a series of increasing subsequences (or sublists) that refer to positions in the text storing

the concatenated string yx, for each symbol y ∈ Σ and context x ∈ P ∗
h , the optimal prefix

cover [FGMS05] for contexts of length at most h. These sublists 〈x, y〉 can be stored by

succinct dictionaries using lg
( nx

k

nx,y
k

)
bits, where nx

k is the number of suffixes of T prefixed

by context x at level k and nx,y
k is the number of suffixes in T prefixed by the concatenated

string yx at level k. Additionally, each sequence of sublists related to yx1, yx2, . . . , yxc,

where c = |P ∗
h | and xi ∈ P ∗

h is lexicographically before xi+1, also forms an increasing sub-

sequence. We call these lists Σ-lists, one for each symbol y in the text. Each dictionary

is stored according to a much-reduced universe size using the wavelet tree; we refer the

reader to [GGV03] for further details on the consequences of this observation with regard

to compression.
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3.4.2 Practical Considerations for Compressed Suffix Arrays

In this section, we apply our practical dictionaries to the CSA framework we described in

Section 3.4.1, achieving practical data structures that implicitly achieve at most twice the

high-order entropy of the text.

Theorem 15. We can encode the nk entries in all sublists at level k of the compressed suffix

array using at most 2nHh + o(n) bits, if we store each sublist as a succinct dictionary D

using RLE+γ encoding.

Proof. Each of our dictionaries D takes at most E(L)+
∑

lg(gi+1) bits of space (since they

are RLE+gamma dictionaries). Since E(L) ≤ E(G)+t by Fact 1 and E(G) =
∑

lg(gi+1)+t

by Fact 2, we can bound the size of each dictionary by 2E(G). Thus, we can replace our

dictionaries with the ones in the analysis in [GGV03], at most doubling the theoretical

worst-case bounds. The result follows automatically from the analysis in [GGV03].

This discovery brings up a remarkable point—our practical dictionary is blind to the

universe size that was so carefully constructed in [GGV03] to allow the use of the fully

indexable dictionaries from [RRR02] (whose space occupancy is almost linearly dependent

on the universe size).

We propose operating implicitly on any partition Ph ⊆ Σh (including a partition based

on the optimal prefix cover P ∗
h [FGMS05]) for h ≥ 0, where |Ph| ≤ nα, for some 0 < α < 1.

(This reasonable assumption is also used in [GGV03].) We argue that due to the nature

of our directory, we are still able to achieve the higher-order entropy given in [GGV03].

Said more mathematically, we can split the cost in [GGV03] as nHh + M(h), where M(h)

refers to the overhead necessary to encode a statistical model for contexts of length up to h.

However, the term M(h) may become large for sufficiently large values of h, since we may

have nHh = 0 in this case.

Fact 3. There exists an h′ < n, such that for each h > h′, we have nHh = 0.
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Proof. Build a suffix tree on the text terminated with n endmarkers that do not appear

elsewhere. Consider one of the internal nodes storing the longest string, say of length h ′.

Then, for any context h > h′, prune the suffix tree, leaving only strings of length h+1. We

can predict the (h + 1)st symbol with conditional probability p = 1, since we are on an arc

leading to a terminal node. (There are no more branches.) At this depth, every symbol

can be predicted with perfect accuracy. The information content of such a distribution is 0,

requiring no bits (i.e., everything is encoded in M(h) bits in the model, which relates to

the pruned suffix tree). Hence, nHh = 0 for h > h′.

In similar cases (in our experiments when h > 4 and for more moderate cases than

Fact 3), the contribution of M(h) may dominate the expression. This observation motivates

the need to acknowledge the model cost as a significant factor in compression. Now we

prove our main theorem in this section, which describes how to encode the Φ function in

equation (3.5).

Theorem 16. We can encode the neighbor function Φ using 2nHh + o(n) bits with γ en-

coding, thus implicitly achieving high-order entropy.

Proof. For ease of exposition, we “number” the lexicographically ordered symbols y as

1 ≤ y ≤ |Σ| and similarly number the lexicographically ordered contexts x as 1 ≤ x ≤

|Ph|. Recall that each Σ list is an increasing subsequence of positions. In [GGV03], we

conceptually break down the Σ lists that constitute the neighbor function Φ of compressed

suffix arrays into sublists for each context of order up to h (to scale the universe size in the

dictionaries). We now encode all the sublists for the same symbol in one shot using our

succinct dictionaries and the wavelet tree. The difference in encoding is that we save space

by not storing pointers to the beginning of each sublist (which can contribute significantly

to the space M(h) for the statistical model). On the other hand, our gaps can be longer

when the gap we encode traverses a sublist. The idea of the proof is to show that the

savings more than make up for the loss. We define the problem below formally.

Let gj be the jth gap in list y (composed of ny items) such that the jth item sj in
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list y is in context xj ∈ Ph and the (j + 1)st item sj+1 in list y is in context xj+1, where

xj ≤ xj+1. Thus, sj is in sublist 〈xj , y〉 and sj+1 is in sublist 〈xj+1, y〉. We decompose the

gap gj into three parts:

• g′j , the length of the jump out of sublist 〈xj, y〉;

• g′′j , the length of the jump over empty sublists inside of list y, namely a subset of the

sublists 〈xj + 1, y〉, 〈xj + 2, y〉, . . . , 〈xj + k, y〉 where xj + k + 1 = xj+1; and

• g′′′, the length of the jump within sublist 〈xj+1, y〉.

By definition, gj = g′j + g′′j + g′′′j . The value g′′′j is the only non-zero quantity when sj

and sj+1 are in the same context x i.e., xj = x = xj+1. Said differently, gj = g′′′j in this

case, since we are not encoding a gap that jumps over other sublists. This is the same

cost incurred in [GGV03] when the sublists are treated separately (since they never encode

a gap that traverses a sublist). Since lg gj ≤ lg(g′j + g′′j ) + lg g′′′j , we can bound our total

overhead by
∑

y∈Σ

ny−1∑

i=1

lg gj − lg g′′′j ≤
∑

y∈Σ

ny−1∑

i=1

lg(g′j + g′′j ) = o(n);

this is exactly the additional cost we incur by treating all of our sublists together. Since we

incur overhead for each sublist exactly once, taking lg(g ′
j +g′′j ) = O(lg n) bits, we can bound

this cost by the number of sublists among the entire structure of [GGV03]. We now give

more details on bounding the above quantity. Let the number of contexts c = |Ph| = nα,

where 0 < α < 1, the same restriction as [GGV03]. For list y, we can have at most

min{c, ny} items with non-zero values for g′j and g′′j . Since
∑

j(g
′
j + g′j) ≤ n, we can encode

these gaps using a dictionary, taking lg
(n

c

)
= o(n) bits per list. We can similarly apply the

bound for each Σ list, taking at most |Σ| times as much space, which is again o(n) bits.

Finally, since we are using γ encoding instead of a more efficient code, we at most double

the encoding cost of each dictionary as in Theorem 15, thus doubling the entropy term and

proving the claimed bound.
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3.4.3 Suffix Array Compression

One major advantage of suffix sorting (block sorting) is that not only does it compress

according to high-order entropy, it also concisely represents the underlying statistical model,

typically exploited using a Move-to-Front (MTF) encoder [BSTW86] (as it happens in

bzip2). We now describe how to use our succinct dictionaries (RLE+γ), the suffix array

(block sorting), and the wavelet tree (incremental representation of dictionaries) to achieve

a compression ratio comparable to that of methods such as bzip2, without using MTF,

arithmetic, or multi-table Huffman encoding. (See also [WM01].) Based on our analysis,

we conclude that our approach avoids explicit treatment of the order of context, but allows

for indirect context merging through the run-length encoding.

The outcome of our experiments is summarized in Table 3.7, where the rows represents

some text files from the Canterbury and Calgary corpora except the last ones (ap90-64.txt,

ap90-100.txt), which are some news files available on TREC Tipster 3 [Tip]. Each row

represents duplicated experiments performed as follows. (Figure 3.2 may help the reader.)

1. We obtain the bwt stream from the input text file.

2. If (MTF = Yes), we transform the bwt stream using MTF.

3. We build the wavelet tree on the stream resulting from the previous two steps.

4. For each bitvector BD found in the wavelet tree, we produce the corresponding se-

quence L of (positive) integer run-lengths.

5. We encode the integers in the sequences L thus obtained, using one of the following

encodings: γ code, δ code, Gol code, Manis code, Ber code, or MixBer code.

6. We divide the total number of bits required by the encoding in the previous step by

the size of the input text file to obtain the bits per symbol (bps).

Column E(L) reports the bps quantity using formula (3.2) in Section 3.2.1. We take E(L)

as an empirical lower bound to the figures for the other codes. (Note that the integers in

L change when using MTF, as a consequence of step 2.) The last six columns of Table 3.7

report the resulting bps figures for the γ, δ, Gol, Manis, Ber, and MixBer codes. Gol

refers to the Golomb code, and uses the median value as its parameter b; Manis refers to
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code [Nel]; Ber is the skewed Bernoulli model with the median value as its parameter b;

MixBer uses just one bit to encode gaps of length 1, and for other gap lengths, it uses one

bit plus the Bernoulli code.

Table 3.7 shows that that Move-To-Front (MTF) and Huffman/arithmetic coding are

not strictly necessary to achieve high-order compression in our case; see the column for

the γ code for an example. Notice that Maniscalco and Golomb gain a huge savings from

using MTF: We do not have an explanation for the gap between Golomb and Bernoulli

without using MTF. (Golomb encodes a positive integer x using 1 + b(x − 1)/bc + blg bc

bits, where b is the median value in our case.) In almost all cases, the γ code performs better

than any other method for each file, aside from E(L).4 In summary, we obtain high-order

compression with three simple ingredients: suffix arrays, wavelet trees, and dictionaries

based on RLE and γ encoding.

3.4.4 Suffix Array Functionalities

We now have all the ingredients for implementing compressed suffix arrays. We still need to

store SA` and its inverse, as well as a dictionary to mark the positions in the original suffix

array represented in SA`. Here we face a similar problem to that of the directories in our

dictionary D where, if we follow the same techniques, we sparsify these arrays. In Table 3.8,

we show the number of bits per symbol needed for compressed suffix arrays on some files

from the Canterbury corpus and TREC Tipster 3 [Tip]. We incur a minimal overhead cost

for adding suffix array functionality; moreover, our potentially costly fractional cascading

in our wavelet tree requires almost negligible space (0.006 bps).

4Note that values for the γ code from Table 3.5 are larger than their corresponding (non-MTF)

entries in the γ column, as the former must includes some padding bits to allow fast access.
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File MTF E(L) γ δ Gol Manis Ber MixBer

book1 No 1.650 2.585 2.691 20.703 20.679 2.723 2.726

book1 Yes 1.835 2.742 3.022 3.070 2.874 2.840 2.921

bible.txt No 1.060 1.666 1.740 15.643 16.678 1.742 1.744

bible.txt Yes 1.181 1.753 1.940 2.040 1.926 1.826 1.844

E.coli No 1.552 2.226 2.520 2.562 2.265 2.448 2.238

E.coli Yes 1.584 2.251 2.566 2.445 2.232 2.398 2.261

world192.txt No 0.950 1.536 1.553 19.901 21.993 1.587 1.589

world192.txt Yes 1.035 1.570 1.707 2.001 1.899 1.630 1.643

ap90-64.txt No 1.103 1.745 1.814 24.071 25.995 1.815 1.830

ap90-64.txt Yes 1.235 1.840 2.031 2.148 2.023 1.915 1.935

ap90-100.txt No 1.077 1.703 1.772 24.594 26.191 1.772 1.787

ap90-100.txt Yes 1.207 1.797 1.985 2.104 1.982 1.870 1.890

Table 3.7: Measure of the effect of MTF on various coding methods when used with

RLE. The MTF column indicates when it is used. The values in the table are in bits

per symbol (bps) and the lowest per row are shown in boldface.

3.5 Space-Efficient Suffix Trees

In this section, we apply our ideas on suffix arrays and compression to the implementation

of a space-efficient version of suffix trees [Kur99]. Suffix trees are at the heart of many

algorithms on strings and sequences, so their full functionality is needed [Gus97b]. Thus,

we support a suite of navigational, hierarchical, and search capability. From a theoretical

point of view, a suffix tree can be implemented in either O(n lg |Σ|) bits or |CSA|+6n+o(n)

bits [Sad02a], which is significantly larger than that of the compressed suffix arrays discussed

before. The bottleneck comes from retaining the longest common prefix (LCP) information,

which requires at least 6n bits [Sad02b]. As an alternative, the same information can be

maintained in at least 4n bits to retain the tree shape of at most 2n− 1 nodes [MRS01a],
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book1 bible.txt E.coli world192.txt ap90-64.txt ap90-100.txt

Φ overhead 0.166 0.050 0.050 0.067 0.032 0.032

Φ 2.785 1.681 2.231 1.586 1.700 1.659

CSA overhead 0.328 0.210 0.210 0.228 0.192 0.191

CSA 2.946 1.841 2.391 1.747 1.860 1.818

Table 3.8: Comparison of space required by Φ and the compressed suffix array

(CSA), given in bits per symbol (bps). Overhead refers to all space other than the

RLE+γ encoding for the data itself.

though there is some slowdown since LCP information is not stored explicitly.5 In either

case, a separate (compressed) suffix array is needed to encode the leaves of the suffix tree.

Since LCP information encodes the internal nodes of the suffix tree, the bound reduces

to less than 6n bits in practice. Despite our dictionaries, however, the space required for

LCP information is not drastically diminished, since we are anyway encoding the internal

structure of the suffix tree.

To achieve less than 6n bits, we employ a simple heuristic based on an arbitrarily

chosen slowdown factor S = O(lg n). We implement part of the lowest common ancestor

simplification introduced in [BFC04]. We use our dictionaries and sparsification of the

entries, sped up with tricks to take advantage of parallelism in modern processors. Once

we have this structure, we use just O(1) additional words to get a representation of a

suffix tree. For example, we obtain 2.98 bps (book1), 2.21 bps (bible.txt), 2.54 bps

(E.coli), and 2.8 bps (world192.txt). These sizes are comparable to those obtained

by gzip, namely, 3.26 bps (book1), 2.35 bps (bible.txt), 2.31 bps (E.coli), and 2.34

bps (world192.txt).6 A point in favor of the compressed representation of suffix trees is

that they fit in main memory for large text sizes, while regular suffix trees must resort to

5A recent manuscript by Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung improves over

these bounds.

6The comparison with gzip is just to show that our implementation is space efficient, not a reason

to replace gzip.
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external memory techniques. A drawback is that accessing the former requires more CPU

time. Nevertheless, we expect that their performance is superior when compared to regular

suffix trees in external memory. Several applications have such large suffix trees, e.g., a

suffix tree for the human genome.

We exploit a folklore relationship between suffix tree nodes and intervals in the suffix

array, which has been used recently to devise efficient algorithms [AKO04, AASA01]. For

each node u, there are two integers 1 ≤ ul ≤ ur ≤ n such that SA[ul . . . ur] contains all

the suffixes stored in the leaves descending from u. Thus, a node u ≡ (ul, ur, `u) is a triple

of integers in our representation, where `u represents the LCP of the strings of the text

beginning at positions SA[ul] and SA[ur]. For each node u, we use this information to

support the following operations:

• reaching u’s parent;

• branching to u’s child v by reading symbol s;

• finding the label of the edge (u, v) (with cost proportional to the length of the label);

• computing the skip value of u;

• determining the number of leaves descended from u;

• checking whether u is an ancestor of v;

• computing the lowest common ancestor of u and v;

• following the suffix link from u to v, in the style of McCreight or Weiner [Gus97b].

We use Kasai et al.’s linear-time method [KLA+01] to compute LCP information. We

modify Sadakane’s method [Sad02b] to store only LCP values larger than 2 lg n; it works

and compresses well. (We also explicitly store LCP values for a few constant-size LCPs

to speed up searching.) We also implement the doubling technique of Farach-Colton and

Bender [BFC04] to compute LCP information in constant time, though we can trade time

to reduce the space required.

We base our algorithms on the fact that we can use LCP information to go from node u

to node v by extending their intervals suitably and use the same information to navigate in

the compressed suffix array. We defer the standard details for most operations and discuss
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only how to follow the suffix link from u to v.

Let u ≡ (ul, ur, `u) and v ≡ (vl, vr, `v). We use our wavelet tree to find two values u′
l, u

′
r

such that vl ≤ u′
l ≤ u′

r ≤ vr. To find vl and vr, we observe that lcp(SA[u′
l], SA[u′

r ]) ≥ `v.

We perform two binary searches, one for u′
l going to the left subtree and the other for u′

r

going to the right subtree. To find v`, at each step of our binary search in position i, we

compute lcp(SA[i], SA[u′
l ]) and compare it with `v. Depending on the outcome, we can

decide which way to go. Since vl is the leftmost position such that lcp(SA[vl], SA[u′
l]) ≥ `v,

we can find vl in a logarithmic number of steps. Finding vr is similar.

We now discuss our experimental setup for the suffix tree and suffix array applica-

tions. Many experiments were run on the machines ATH and XEO that we described in

Section 3.3.4. The data sets were drawn mainly from the Canterbury corpus, TREC Tip-

ster 3 [Tip], and electronic books from the Gutenberg project at <http://promo.net/pg/>.

Our source code is written in C in an object-oriented style. Our code is organized

as five distinct modules, which we now describe briefly. Module dict implements our

crucial dictionaries (Section 3.2). Module phi implements the wavelet tree and its use

in compressed suffix arrays (Section 3.3), while module csa implements the compressed

suffix array and related functionality (Section 3.4). Module lcp stores LCP information

and module st implements suffix tree functionality, though we avoid storing any nodes

explicitly (Section 3.5). The latter module requires fast decompression of symbols, access

to the suffix array and its inverse, and fast computation of LCP information, all of which

are provided in the other modules.

3.6 Conclusions

In this chapter, we develop the simple notions of run-length encoding (RLE) and γ encoding

to achieve competitive compression ratios and fast compression and decompression time for

both indexing and compression algorithms. (Of course, we must add the dominant cost

of computing bwt by suffix sorting and that of inverting it.) Some independent work has

also shown that compressed suffix arrays are still competing in search time [HLS+04]. The
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techniques we have developed are practically sound, but also grounded in solid theoretical

analysis and strong notions of encoding both the data and the underlying model. Our

method is tunable to the access pattern of any file, which is a property unknown in similar

work on compressed indexing. While we do not claim that our software is a ready-to-use

library, we intend to perform intense algorithm engineering to further tune the search time

of our indexing structures, though much has already been done. We construct the index in

competitive time (roughly 1-2 minutes for 64 MB of data on our test system).

Our compression algorithm wzip does not require any additional parameters beyond

the text size, alphabet size, and block size, and is tailored to work for large alphabets, e.g.,

Unicode, UTF/16. Our method performs integer bit assignments and does not resort to

costly computation of fractional bits, as does an arithmetic coding technique. A simple copy

operation is only 2–6 times faster than our wzip compression, and only 3–7 times faster

than our decompression. As a matter of fact, our encoding algorithm is so fast that its

major bottleneck is the encoding and decoding of γ. However, the real bottleneck remains

the fast computation of the bwt, namely by suffix sorting.

Despite these observations, data in http://www.maximumcompression.com shows that

our method does not achieve the best compression ratio on the market. On the other hand,

our ideas are easy to implement, as they use introductory material on standard compres-

sion techniques. Our wavelet encoding is in some sense related to inversion coding [Deo02],

though the analysis in [GGV03] is the first to truly understand its impact. More criti-

cally, however, the wavelet tree serves as a vast improvement in access time over inversion

coding ideas. Other prefix codes (e.g., those in [Deo02, Fen96, Fen02, How97]) present

other refinements with various tradeoffs. Theoretical exploration of the suite of algorithms

from [Deo02] could illuminate other approaches than the ones we have taken.

Both our compression and indexing methods depend directly upon the space bounds of

our dictionaries; any improvement there yields significant savings on our method. The best

possible compression achievable is that empirically established by E(L) in formula (3.2);

however, as we saw in our experiments with Huffman encoding, RLE+γ encoding performs
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quite competitively with respect to Huffman codes in practice (and we didn’t even count

the space required for the prefix tree for Huffman encoding). Our key to space reduction

is to exploit the underlying entropy in the text using a transform and a solid method of

removing redundancy using the wavelet tree.
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Chapter 4

Compressed Dictionaries and
Data-Aware Measures

In this chapter, we propose measures for compressed data structures, in which space usage

is measured in a data-aware manner. In particular, we consider the fundamental dictionary

problem on set data, where the task is to construct a data structure for representing a set S

of n items out of a universe U = {0, . . . , u − 1} and supporting various queries on S. We

use a well-known data-aware measure for set data called gap to bound the space of our

data structures.

We describe a novel dictionary structure operating in near-optimal time that requires

gap + O(n lg(u/n)/ lg n) + O(n lg lg(u/n)) bits. Under the RAM model, our dictionary

supports membership, rank, and predecessor queries in nearly optimal time, matching the

time bound of Andersson and Thorup’s predecessor structure [AT00], while simultaneously

improving upon their space usage. We support select queries even faster in O(lg lg n) time.

4.1 Introduction

The proliferation of data is a problem that is suffocating our abilities to manage informa-

tion. Massive data sets from biological experiments, Internet routing information, sensor

data, and audio/video devices require new methods for managing data. In many of these

cases, the information content is relatively small compared to the size of the original data.

We want to exploit the huge potential to save space in these cases. However, in many

applications, data also needs to be indexed for fast query processing. The new trend of

data structure design considers time and space efficiency together: The ultimate goal is to

build structures that operate in the optimal (or nearly so) time bound, while requiring the

minimum amount of space, tuned for the particular input data.
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Ideally, the space required for a structure should be defined with respect to the Kol-

mogorov complexity of the data upon which the structure is built, as it is the space of the

smallest program that can generate the input data. Unfortunately, it is undecidable for

arbitrary input, making it an inconvenient measure for practical use. Thus, other measures

of compressibility are used as a framework for data compression, like entropy for textual

data.

One fundamental type of data is set data, which consist of a subset S of n items from a

universe U = {0, . . . , u− 1}. Some specific examples include IP addresses, UPC barcodes,

and ISBN numbers: set data also appear in inverted indexes for libraries and web pages,

as well as results from scientific experiments. In many natural examples of set data, S is

not a random subset of U and can be compressed. (For instance, consider a set S with a

few tightly clustered items spread throughout U .)

In this chapter, we use the gap measure [BMNM+93] (described formally in Sec-

tion 4.2.2), which has been used extensively as a reasonable space measure in the context of

inverted indexes [WMB99]. The gap measure counts the space required to encode the dis-

tances between successive items and is usually much less than the information-theoretic

lower bound of dlg
(
u
n

)
e ≈ n lg(u/n) bits.1 (This bound is known as the information-

theoretic minimum because it is the minimum number of bits needed to differentiate the
(u
n

)
possible subsets of n items out of a universe of size u.) A gap-style encoding can be

potentially much smaller than dlg
(u
n

)
e bits for many of the data sets above, since it exploits

short distances between items.

We use these notions of compressibility to design compressed data structures that index

the data in a succinct way and also allow fast access. In particular, we address the funda-

mental dictionary problem, where we design a data structure to represent a subset S that

supports various queries on S. In this chapter, we present compressed representations for

both fully indexable dictionaries (FID) and indexable dictionaries (ID), improving the space

required by previous results while maintaining near-optimal query time. In particular, un-

1Throughout the chapter, we assume the base of the logarithm is 2.
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der the unit-cost RAM model, we develop a fully indexable dictionary (FID)—a data struc-

ture supporting rank and select queries—of size gap +O(n lg(u/n)/ lg n) +O(n lg lg(u/n))

bits, while supporting rank in time matching Andersson and Thorup’s (nearly-optimal)

predecessor structure [AT00] and select even faster in O(lg lg n) time. When n ∈ o(u), our

fully indexable dictionary is asymptotically equal to gap space (with a constant of 1). This

is important because, for most real-life data, n � u and gap is significantly less than the

worst-case information-theoretic minimum dlg
(
u
n

)
e bits. To our knowledge, this result is the

first of its kind. Even when considered from a worst-case perspective, our data structures

are the first to take O(n lg(u/n)) bits with near-optimal query time. We also develop an

indexable dictionary (ID)—a data structure supporting partial rank and select queries—in

the same number of bits that supports each query even faster in O(lg lg n) time. This result

is the first to operate with gap-style bounds in space with time sublogarithmic in terms of

the number of items stored. Moreover, our data structures are useful in practice; we also

have a practical implementation and we discuss algorithmic engineering and experimental

results in near the end of this chapter. Our results show that gap is about 10 − 40% of

dlg
(
u
n

)
e for many practical data sets.

The work in this chapter is a collaborative effort with Wing-Kai Hon, Rahul Shah, and

Jeffrey Scott Vitter.

4.1.1 Comparisons to Previous Work

Previous results of Jacobson [Jac89b], Munro [Mun96], Brodnik et al. [BM99], Pagh [Pag99],

and Raman et al. [RRR02] develop dictionaries that support constant-time queries. The

best among these are the indexable dictionaries (ID) (supporting partial rank and select)

and the fully indexable dictionaries (FID) (supporting rank and select) by [RRR02], both

supporting constant-time queries. Their ID requires
⌈
lg
(u
n

)⌉
+ o(n) + O(lg lg u) bits, and

their FID requires
⌈
lg
(
u
n

)⌉
+ O(u lg lg u/ lg u) + O(lg lg u) bits. These results seem quite

strong, as the constant factor associated with the information-theoretic minimum term

is 1; unfortunately, the space is not bounded in a data-aware manner.
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Recent work by Mäkinen and Navarro [MN06] and Sadakane and Grossi [SG06] achieves

an FID with constant time queries taking gap + O(n lg lg(u/n)) + O(u lg lg u/ lg u) bits of

space.2 Both of these data structures are meaningful as methods to achieve constant-time

queries over a gap representation. Still, these FID structures do not work well when n� u,

as the o(u) term will be much (even exponentially) larger than the information-theoretic

minimum term dlg
(u
n

)
e, dwarfing any savings we want to achieve. For instance, consider

a typical example of maintaining a dictionary for IP lookup, storing say 217 IP addresses

out of a universe of size 232. In this case, dlg
(u
n

)
e is roughly 345,661 (about 218) bits while

their o(u) term is roughly 6.71 × 108 (about 229) bits—several orders of magnitude larger

than the information-theoretic minimum dlg
(
u
n

)
e bits.

Blandford and Blelloch [BB04] proposed an interesting scheme that allows easy trans-

formation of any FID implemented with O(n) pointers into another that requires O(gap)+

O(uα lg u) bits for any 0 < α < 1.3 After the transformation, query time is slowed down

by a factor of 1/α compared with time required by the original dictionary. Blandford and

Blelloch’s scheme allows us to have FIDs with space bounded in a data-aware manner. How-

ever, their analysis still has a potentially excessive uΩ(1) term. We note that their method

can be tuned by some of the techniques developed in this chapter to achieve (1 + ε)gap

bits of space. However, this increases their search time by a multiplicative factor of 1/ε. In

addition, they require either complex RAM operations or a decoding table that may require

more space. This is in part because their space-savings approach is fundamentally different

from our own; it packs a variable number of items into a constant number of memory words

and fetches the information in a constant number of RAM operations or by use of a large

decoding table. In contrast, our data structure fetches one item at a time. We describe

this structure in more detail in Section 4.4.

A fundamental aspect of a dictionary’s search capabilities is captured by the predecessor

2The middle term O(n lg lg(u/n)) comes from encoding the extra bits needed for a prefix code

(such as a δ code).

3They only claim O(n lg((u + n)/n)) + O(uα lg u) bits in their paper.

137



www.manaraa.com

problem, since dictionaries that (implicitly) solve the predecessor problem require funda-

mentally more space and time than those that do not. Precisely, the predecessor query

determines the largest item in S smaller than the query. Fredman and Willard [FW93] pro-

posed the well-known fusion tree which supports predecessor queries in O(lg n/ lg lg n) time.

The query time was later improved by Beame and Fich’s key result [BF99]. In particular,

Beame and Fich describe a data structure taking O(n2 lg u) bits of space that supports mem-

bership and predecessor queries in BF (u, n) = O(min{(lg lg u)/(lg lg lg u),
√

(lg n)/(lg lg n)})

time. They also show that this bound is tight as long as we have only O(nO(1) lg u) bits

available.4 Pǎtraşcu and Thorup [PT06] improved their space to O(n1+exp(− lg1−ε lg u) lg u)

bits of space, but unfortunately this improvement does not help our data structure.

Andersson and Thorup [AT00] provide a transformation to Beame and Fich’s data

structure, improving the space to O(n lg u) bits and making the data structure dynamic

using exponential search trees. However, the query time increases to

AT (u, n) = O

(

min

{√

lg n

lg lg n
,

lg lg u

lg lg lg u
· lg lg n, lg lg n +

lg n

lg lg u

})

.

Since rank and select can be used to answer predecessor queries, we improve Anders-

son and Thorup’s structure in terms of space without sacrificing query time. In the worst

case, our fully indexable dictionary compares favorably with both Raman et al. [RRR02]

and Blandford and Blelloch [BB04]. With respect to the former, though we cannot sup-

port O(1)-time queries, we have eliminated the problematic o(u) space term. Our query

time—which is AT (u, n)—is already close to the optimal BF (u, n). For our indexable dic-

tionary, when compared with Raman et al.’s ID structure [RRR02], we pay a small price

in the lookup time in exchange for achieving space bounds in terms of gap, which may be

significant in practice.

The table in Figure 4.1 lists the theoretical results with practical estimates for the space

required to represent the various compressed dictionaries we mentioned. In all reported

4It is this result that necessitates Raman et al.’s FID [RRR02] o(u) space term, since constant-time

rank and select queries imply constant-time predecessor queries as well.

138



www.manaraa.com

bounds, we refer to fully-indexable dictionaries (FID). Note that BF (u, n) ≤ AT (u, n) for

any u and n.

Figure 4.1: Time and space bounds of dictionaries for rank and select queries.

Theoretical Practicala

Paper Time Space (bits) Space (bits)

this chapter AT (u, n) gap + o(lg
(

u
n

)
) when n� u ≤ 1, 830, 959

[BB04] AT (u, n) 2gap + Θ(uε) ≤ 1, 855, 116

[vEBKZ77]b O(lg lg u) Θ(n lg u) > 3, 200, 000

[AT00] AT (u, n) Θ(n lg u) > 3, 200, 000

[BF99] BF (u, n) Θ(n2 lg u) > 320, 000, 000, 000

[PT06] BF (u, n) Θ(n1+exp(− lg1−ε lg u) lg u) > 10, 000, 000

[Jac89b] O(1) u + Θ(u lg lg u/ lg u) > 4, 429, 185, 024

[RRR02] O(1) lg
(

u
n

)
+ Θ(u lg lg u/ lgu) > 136, 217, 728

[MN06] O(1) gap + O(n lg lg(u/n)) + Θ(u lg lg u/ lgu) > 136, 017, 728

[SG06] O(1) gap + O(n lg lg(u/n)) + Θ(u lg lg u/ lgu) > 136, 017, 728

aThe practical space bounds are for indexing our upc 32 file, with n = 100,000 and

u = 232. The values for [vEBKZ77, BF99, Jac89b, RRR02, MN06, SG06] are esti-

mated by their reported space bounds. For these methods, we relaxed their query times

to O(lg lg u) to provide a fairer comparison in space usage.

bThe theoretical space bound is from Willard’s y-fast trie implementation [Wil84].

4.1.2 Outline of the Chapter

The organization of the chapter is as follows. In Section 4.2, we introduce three space

measures for set data and show the strong relationship among them. In Section 4.3, we

develop a binary searchable dictionary representation (BSD), which serves as an important

component in our main results. In Section 4.4, we describe our fully indexable dictionary

and analyze it for both gap-style bounds and worst-case bounds. We achieve a fully in-

dexable dictionary supporting rank in AT (u, n) time and select in O(lg lg n) time, taking

139



www.manaraa.com

gap + o(n lg(u/n)) bits of space, or O(n lg(u/n)) bits in the worst case. Note that fully

indexable dictionaries that take O(nO(1) lg u) bits of space are subject to the lower bound

of [BF99]; hence, these times are near-optimal with respect to BF (u, n). In Section 4.5,

we present our indexable dictionary result, which cannot solve predecessor queries, and

can thus improve upon the query times from [BF99]. Section 4.6 details our experimental

findings. We conclude in Section 4.8.

4.2 Dictionaries and Data Aware Measures

Let S = 〈s1, . . . , sn〉 be an ordered set of n items from a universe U = {0, 1, . . . , u − 1}

of size u; that is, i < j implies si < sj. We want to represent S in a succinct form so

that we can perform basic dictionary queries on its compressed representation. We define

dictionaries more formally in Section 4.2.1. The normal concern of a dictionary is how fast

one can answer a query, but space usage is also an important consideration. We would like

the dictionary to use the minimum space for representing S, regardless of how quickly it

can be searched. There are some common measures to describe this minimum space. The

first measure is n lg u, which is the number of bits needed to store the items si explicitly in

an array. The second measure is the information-theoretic minimum dlg
(u
n

)
e ≈ n lg(u/n),

which is the worst-case number of bits required to differentiate between any two distinct n-

item subsets of universe U . In Section 4.2.2 we describe two more measures for representing

the set S, motivating these as reasonable measures for analyzing the space required by a

dictionary. We show strong relationships between these measures in Section 4.2.3, along

with some experimental results that illustrate their relative performance.

4.2.1 The Dictionary Problem

The dictionary problem appears as a fundamental black box component in a number of

applications used to offer fast access (for some queries, even constant-time access) to the

data. Some examples include suffix arrays and IP lookup tries. Our interest is to exploit
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the great potential for a functional but compressed dictionary data structure. In some

applications, dictionaries are the bottlenecks, both in terms of space and query time.

We describe some fundamental queries on set data. Here, a ∈ U . The member(S, a)

function indicates whether a appears in the set S. The rank(S, a) function returns the

number of items in S that are less than or equal to a. The select(S, i) function returns

the ith smallest item of S, for i ranging from 1 to n. The prank(S, a) function is a rank

function, but only for items of S. The pred(S, a) function returns the predecessor of a, the

largest item x in S such that x < a. We define these formally below.

rank(S, a) =
∣
∣{si|si ≤ a}

∣
∣

select(S, i) = si

member(S, a) = 1 if a ∈ S, 0 otherwise

prank(S, a) = rank(S, a) if a ∈ S, −1 otherwise

pred(S, a) = max{si|si < a} if rank(S, a− 1) > 0, −1 otherwise

Jacobson [Jac89b] has discussed and motivated the power of rank and select

functions at some length. In particular, he shows that the operation set {rank, select}
can perform more powerful queries than the operation set {member, pred}. As a

result, much of the subsequent work has considered rank and select as fundamental

operations on dictionary structures (such as [RRR02, Pag99, BB04]). To further

illustrate this point, note that the right-hand column can be defined solely in terms

of rank and select. For instance, member(S, a) = rank(S, a) − rank(S, a − 1) and

pred(S, a) = select(S, rank(S, a − 1)) if rank(S, a − 1) > 0. We now define some

convenient notation to describe different kinds of dictionaries.

Definition 4. An indexable dictionary (ID) represents a subset S ⊆ U and supports

the queries prank(S, a) and select(S, i). A fully indexable dictionary (FID) represents

a subset S ⊆ U and supports the queries rank(S, a) and select(S, i).

Fully indexable dictionaries can solve predecessor queries, and so they immediately

find application in rich problem areas as IP lookup structures [CDG99], compressed

text indexing [GGV03], and suffix arrays [GV00].
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Suppose that for the set S of n items, each item si is also associated with a

piece of satellite data di. To allow quick retrieval of the satellite data once the

item is given, we could consider a set S ′ of tuples of the form 〈key, data〉, with

S ′ = {〈s1, d1〉, 〈s2, d2〉, . . . , 〈sn, dn〉}, and build a dictionary on S ′. In this context, we

define lookup(S ′, a) = dj when a = sj for some j and null otherwise.

Definition 5. A lookup dictionary (LD) is a data structure representing a set S ′

that supports the query lookup(S ′, a).

Let A = d1d2 . . . dn be a bitvector of length |A| = ∑i |di| with the data di concate-

nated together. If each piece of satellite data di is of a fixed length r, a simple array

structure of n × r bits can be used to store the satellite data. We can construct an

ID on S, so that for any item si, the prank query returns the position in A where its

satellite data is stored. Combining this with RRR’s ID result, we obtain the following

lemma, which is used extensively in our data structures in Sections 4.4 and 4.5.

Lemma 28. There exists a lookup dictionary (LD) with m(q + r) bits supporting

lookup(S ′, a) in constant time, where m = |S ′|, q ≤ lg u is the number of bits to

represent each key in S ′, and r is the number of bits for each satellite data.

When the satellite data are variable-length, we still store them using
∑

i |di| bits.

However, we need to know the starting position of each satellite data item. To do this,

we store an ID on m items, where the ith item denotes the starting bit position of the

ith piece of satellite data among the
∑

i |di| possible positions. We ask select queries

to determine the location of the ith satellite data item. The result of Blandford and

Blelloch [BB05] on arrays of variable-length bitstrings also provides this functionality.

4.2.2 The gap and trie Measures

One well-known method for representing the set S is gap encoding [BMNM+93], which

is often used in compressing inverted indexes. (We refer the reader to [WMB99] for
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a detailed treatment of the various applications of this method, as well as a source

for further references.) Consider the gaps between consecutive items in S, where the

ith gap gi is equal to si − si−1. We can now represent the set S as the stream of

gaps G = g1, . . . , gn, where g1 = s1, along with the value n. The stream G of gaps

can be stored using variable length encoding depending upon their size. Suppose we

could store each gi in dlg(gi + 1)e bits. Then, the total space, which we call the gap

measure, is

gap(S) =
n∑

i=1

dlg(gi + 1)e

bits. Note that we cannot merely store each gi in dlg(gi + 1)e bits and decode the

stream uniquely; we also need to know the separation boundaries between succes-

sive items. One popular technique to “mark” these separations is by using a prefix

code such as the δ code [Eli75]. In δ coding, we represent each gi in dlg(gi + 1)e +

2 dlg lg(gi + 1)e bits, where the first dlg lg(gi + 1)e bits store the unary encoding of

the number dlg lg(gi + 1)e, the next dlg lg(gi + 1)e bits are the binary representation

of the number dlg(gi +1)e, and the final dlg(gi +1)e bits are the binary representation

of gi. We can then represent the stream of gaps G = g1, g2, ..., gn by concatenating

the encoding of each gi such that G is uniquely decodable. We refer to these ex-

tra bits of overhead beyond gap(S) as the decoding overhead Z(S). For δ coding,

Z(S) = 2
∑

i dlg lg(gi + 1)e bits. Our theoretical results in this chapter make use of

the δ code.

Another example of a prefix code is the nibble code proposed in [BB04]. In this

chapter, we will primarily use a variation of the nibble code called nibble4 in our

experiments. For this scheme, we write a “nibble” part of ddlg(gi + 1)e/4e in unary,

which is followed by 4 · bdlg(gi + 1) + 3e/4c bits to write the binary representation

of gi, padded out to multiples of four bits. (Later, we describe nibble4fixed, which

we use for 64-bit data. It encodes the first part in binary in four bits, since for a
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universe size of 264, we would need to write 64/4 = 16 different lengths.)

By Jensen’s inequality,5 gap(S) is maximized when all gaps gi are the same. In

this case, gap(S) would require roughly n lg(u/n) bits, since each of the n gaps would

be of size u/n. Z(S) is also maximized in this case for δ coding. Hence, Z(S) is

roughly 2n lg lg(u/n) bits. Other prefix codes, such as the γ code [Eli75] and some

combination of Huffman and fixed-length coding, result in a somewhat different Z(S).

In this chapter, we use the δ encoding scheme and denote the bit representation of S

using this encoding by GAP(S). The size of GAP(S) is |GAP(S)| = gap(S) + Z(S) bits.

Another method for compression of S is the prefix omission method (POM) [KS02],

which is generally used to represent bitstrings of arbitrary length. Consider the bit-

strings sorted lexicographically. We can represent each bitstring with respect to the

previous bitstring by omitting the common prefix of the two. To compress S by

POM, we think of each item of S as its lg u-length bit representation. The POM

for S can also be seen as a subtree (of n leaves) of the complete binary tree on u

leaves (which is a trie). We denote this subtree by Tree(S). Each left edge of Tree(S)

represents a 0, and each right edge represents a 1. Each root-to-leaf path in this trie

defines an item s in S.

For x, y ∈ S, let x	y denote the bitstring formed by omitting the common prefix

of x and y from the bit representation of x. More precisely, let |lcp(x, y)| denote the

length of the longest common prefix of x and y; then, x	y is the last lg u−|lcp(x, y)|
bits of x. To represent S by POM, we generate the stream L = l1, l2, . . . , ln, where l1

is the bit representation of s1 in lg u bits and li = si	si−1. Let |li| denote the number

of bits in li. Thus, the cost of this representation, which we call the trie measure, is

trie(S) =
n∑

i=1

|li| = |s1|+
n∑

i=2

|si 	 si−1|,

which equals the number of edges in Tree(S). Similar to the gap measure, the above

5For a concave function f and x1 + x2 + · · ·+ xk = x,
∑

i f(xi) is maximized when xi = x/k.
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representation with trie(S) bits is not decodable as each string li is of variable length.

Hence, we need some extra bits Z ′(S) for decoding, which takes 2
∑

idlg |li|e bits in

the case of δ encoding. We use TRIE(S) to denote the bit representation of S using

POM, which takes |TRIE(S)| = trie(S) + Z ′(S) bits of space.

Let S + a denote the set in which the positive integer a is added (modulo u) to

each item of S. Thus, the set S + a is {(s1 + a) mod u, (s2 + a) mod u, . . . , (st + a)

mod u}. We define the shifted trie measure strie(S) = mina{trie(S + a)}, which

corresponds to the number of bits needed to compress S by POM under the ‘best

shift’. We denote STRIE(S) to be the corresponding TRIE(S + a), and we define

the space requirement |STRIE(S)| similarly. Note that |STRIE(S)| also includes the

additional overhead of lg u bits to store the number a to retrieve the original S. Next,

we argue that trie(S) could be somewhat larger than gap(S), but strie(S) is close to

gap(S).

Below, we summarize the notation introduced in this section.

gap(S) =
∑n

i=1dlg(gi + 1)e

|GAP(s)| = gap(S) + Z(S)

trie(S) = |s1|+
∑n

i=2 |si 	 si−1|

|TRIE(s)| = trie(S) + Z ′(S)

strie(S) = mina{trie(S + a)}

|STRIE(s)| = strie(S) + lg u

|x	 y| = lg u− |lcp(x, y)|
Tree(S) is a trie that stores the binary

representations of items of S

4.2.3 Relationship Between gap, trie and strie

In this section, we show a strong relationship between the gap, trie and strie mea-

sures. For any item si, dlg(gi + 1)e is always smaller than |li|, but |li| could be

much larger. For example, when si−1 = 2k − 1 and si = 2k, |li| = k even though

dlg(gi + 1)e = 1. We show that this case cannot occur too frequently and prove that

trie(S) ≤ 2gap(S); furthermore, by applying a ‘random shift’, such cases are almost

all eliminated. In the following lemma, we show that trie(S) can be more tightly
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bounded using this intuition.

Lemma 29. The trie measure on the set S +a requires trie(S+a) ≤ gap(S)+2n−2

bits on average over all values of a ∈ [1, u].

Proof. We proceed by showing that the sum
∑

a trie(S + a) is at most u(gap(S) +

2n−2) bits. Recall that for a gap gi, |li| must be at least dlg(gi+1)e bits long. For an

arbitrary choice of a, |li| can range from dlg(gi + 1)e to lg u bits in length. We count

how many times each |li| contributes to the sum. For an arbitrarily chosen gap gi,

there are exactly gi values of a such that |li| will branch from root(Tree(S)). Thus,

the total cost incurred is gi lg u bits. Similarly, there are 2gi values of a such that |li|

would contribute lg u−1 bits to the sum. In general, for j < lg u−dlg(gi +1)e, there

are 2jgi values of a such that |li| would contribute lg u− j bits to the sum. Finally,

the number of times |li| = dlg(gj + 1)e is at most u(2dlg(gi+1)e − gi)/2dlg(gi+1)e. Thus,

|li| contributes to the sum with

lg u−dlg(gi+1)e−1
∑

j=0

2jgi(lg u− j) +
u
(
2dlg(gi+1)e − gi

)

2dlg(gi+1)e
dlg(gi + 1)e

= udlg(gi + 1)e − gi lg u +
2ugi

2dlg(gi+1)e
− 2gi.

We also incur an additional cost associated with shifts such that si + a > u, where

we charge |li| with lg u bits, contributing an additional gi lg u bits. Summing up and

averaging over each of the u possible shifts, we see that the gap gi requires an average

of less than dlg(gi + 1)e + 2 bits. We then sum this over all possible gaps, showing

that an average trie(S + a) is
∑n

i=1(dlg(gi + 1)e+ 2− 2gi/u) = gap(S) + 2n− 2 bits,

thus proving the lemma.

Since the minimum is less than the average, we obtain the following corollary.

Corollary 5. The shifted trie measure, strie(S), is at most gap(S) + 2n− 2.
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Note that |li| is bounded on average by dlg(gi + 1)e + 2 bits. Since the decoding

overhead is d2 lg |li|e with the δ code, we can bound the total overhead 2
∑

idlg |li|e by

2n lg lg(u/n) bits using Jensen’s inequality. Thus, the space requirement |STRIE(S)|

is at most strie(S) + 2n lg lg(u/n) + lg u bits.

We provide some experimental results on real data sets in Figure 4.2, which bear

out the theoretical findings in this section. Here, the files tested are described in

Section 4.6.1, and the space is reported (in bits) along the y-axis. The figure on the

left shows data files with a universe of size u ≤ 232, and the figure on the right shows

data files with u ≤ 264. Notice that gap(S) is significantly smaller than lg
(

u
n

)
for

real data. In fact, nibble4 is a decodeable gap encoding that also outperforms the

information-theoretic minimum. Since gap(S) is less than trie(S) for all of the files,

we are free to use the gap measure for the remainder of our experimental results.
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Figure 4.2: Comparison of lg
(

u
n

)
, trie(S), gap(S), and a gap stream encoded ac-

cording to the nibble4 code for the data files in Section 4.6.1.

4.3 Binary Searchable Dictionary Representation

Despite all the development on the POM model, the trie encoding of S does not

support time-efficient queries as we would like. Klein and Shapira [KS02] use the

trie encoding to search in compressed dictionaries, but their searching algorithm
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essentially consists of a linear scan of the items in the dictionary and takes at least

Ω(n) time. Most algorithms using gap encoding also need a linear scan. In this

section, we build a binary searchable data structure BSD, which resolves rank and

select queries in O(lg n) time. We show that the space required by this structure is

gap bits plus low-order terms. In fact, the main point of this section is in showing

that a binary-searchable representation requires about the same number of bits as

simple linear encoding schemes. Also, BSD is our main building block and will be used

later in this chapter to support fast lookup in our FID and ID dictionary structures.
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Fig. A. The left hand side

shows a binary search tree

built on the items 1, 4, 8,

9, 12, 13, and 15. Beneath

that is its pre-order layout on

disk, where the arrows rep-

resent pointers to the right

subtree. The right hand side

shows the trie built on the

same items. Beneath that is

the corresponding layout on

disk, but each item s is en-

coded with respect to anc(s).

For instance, 8 is encoded in

the layout on the right as 0,

since anc(8) = 9 differs from

it by a single bit.

The BSD structure encodes a pre-order traversal of a balanced binary search tree T

built on the n items of S. In Figure A, the pre-order traversal for the set S is 9, 4, 1,

8, 13, 12, and 15. The key point is that instead of storing each item si explicitly in

lg u bits, we encode an item with respect to an ancestor anc(si), defined as follows.

Let Ai be the set of all the ancestors of si in the binary search tree T . Then,
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anc(si) = x ∈ Ai such that lcp(si, x) is maximized over all ancestors in Ai. We

represent si by si 	 anc(si) using lg u− |lcp(si, anc(si))| bits, reminiscent of our trie

encoding. Now we define the BSD(S) encoding.

We use a recursive layout to describe the pre-order traversal of the binary search

tree of n items. Let the subsets SL = 〈s1, s2, ..., sdn/2e−1〉 and SR = 〈sdn/2e+1, ..., sn〉

represent the left and right subtrees of the sdn/2eth item. Generally, let Si,j =

〈si, si+1, ..., sj〉. Let anc(sdn/2e) = 0. For BSD(S), let |BSD(S)| denote the number

of bits needed to encode BSD(S). Then, we define the BSD encoding as

BSD(S) = 〈sdn/2e 	 anc(sdn/2e); |BSD(SL)|; BSD(SL); BSD(SR)〉.

Note that sdn/2e 	 anc(sdn/2e) is a variable-length string, which is stored using δ

coding. The term |BSD(SL)| constitutes additional overhead but is needed in order to

jump to the right half of the set while searching. (We will call this term the pointer

cost, and we will refer to it in our experimental section.) In fact, we could actually

store just min{|BSD(SL)|, |BSD(SR)|} bits (with an additional n bits to indicate our

choice), along with remembering whichever was smaller of the left and right subtrees.6

Nevertheless, it turns out that BSD requires nearly the same space as does the TRIE

encoding. Next, we describe how rank and select functions can be supported in

O(lg n) time using BSD(S), and then we analyze the space usage of BSD(S).

We use BSD(S) as a black box on O(lg n) items and achieve O(lg lg n) time; how-

ever, in order to do so, we must be able to decode a δ-coded item (or bitstring) in

O(1) time in the RAM model. We assume that the word size of the machine is at

least lg u bits, and that we are allowed to perform addition, subtraction, multiplica-

tion, and bitshift operations in O(1) time. We also assume that we can calculate the

position of the leftmost 1 of a subword x of lg lg u bits in O(1) time. (This task is

6Making this improvement would require the structure to be built from the bottom-up rather than

with our recursive formulation above; we defer those details in the interest of clarity.
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equivalent to calculating dlg(x + 1)e when the word x is seen as an integer.) We can

also easily encode and decode the 	 operator using bitshifts and additions. These

assumptions are sufficient to allow O(1) decoding time. If this model is not applica-

ble, we can simulate the decoding by explicitly storing the decoding result of every

possible lg lg u-bit number in a table with lg u entries. Note that this table takes

O(lg u lg lg lg u) bits, which is negligible overhead.7

In order to support rank and select, we just need to store the single value n

(in lg n bits) at the beginning of the BSD to indicate how many items are stored

within the structure. Since our structure is a well-defined balanced binary tree,

at any node x with nx items, we know that the size of our left subtree contains

dnx/2e − 1 items, and our right subtree contains nx − dnx/2e items. Hence, we

can compute rank and select based upon this information. More precisely, given

BSD(S), rank(S, a) and select(S, i) can be computed in O(lg n) time by calling the

recursive functions rrank(BSD(S), a, 0, u, n) and rselect(BSD(S), i, 0, u, n) as detailed

below. In the pseudocode, the function root(B) returns the first encoded string in B

(i.e., root(B) = si 	 anc(si)), and the function decode(x, `, r) returns the item si

that corresponds to the root of B. The latter function can be computed by first

determining anc(si), which is one of ` or r based on the first bit of root(B). Then,

7We could reduce the size of this table even further to O(lg lg n lg lg lg lg n) bits by using a slightly

different encoding scheme than the δ code.
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si = (anc(si) div 2y)× 2y + root(B), where y = |root(B)|.
function rrank(B, a, `, r, n) {

if (n = 0) return 0;

x← root(B);

z ← decode(x, `, r);

if (z = a) return dn/2e+ 1;

else if (z < a)

return dn/2e+
rrank(BSD(SR), a, z, r, n− dn/2e);

else return rrank(BSD(SL), a, `, z, dn/2e − 1);

}

function rselect(B, i, `, r, n) {
x← root(BSD(S));

z ← decode(x, `, r);

if (i = dn/2e) return z;

else if (i > dn/2e)
return

rselect(BSD(SR), i− dn/2e, z, r, n− dn/2e);
else return

rselect(BSD(SL), i, `, z, dn/2e− 1);

}

We denote the rank(S, a) and select(S, i) that operate on BSD(S) by the functions

BSD rank(B, a) and BSD select(B, i), where B is a pointer (of lg u bits) to BSD(S).

Lemma 30. The BSD(S) representation requires at most trie(S) + O(n lg lg(u/n))

bits and supports rank and select functions in O(lg n) time.

Proof. The space of BSD(S) can be divided into three parts: (i) the space for all

si	 anc(si); (ii) their decoding overhead; and (iii) the space to encode all |BSD(SL)|,

used to jump to the right half of the encoding. We now describe the space required

for each of these parts.

The space for (i) can be shown to be equal to the number of edges in Tree(S),

which is exactly trie(S). To prove this, it suffices to show that each edge in Tree(S) is

encoded only once in its BSD(S) representation. Let item s be encountered according

to its pre-order binary search tree traversal. Let A be the set of all ancestors on the

root-to-leaf path leading to s in the binary search tree. In the trie structure, the path

to s must lay between two root-to-leaf paths in the trie: either the path leading to

its rightmost encoded ancestor on its left l or its leftmost encoded ancestor on its

right r. We encode s	anc(s), which must either be l or r. (This could be the parent
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of s.) Since no other edge in the trie that lies between the path to l and the path

to r has been used thusfar, each trie edge is encoded only once in any BSD structure.

For (ii), the overhead is analogous to Z(S) and we can bound it by O(n lg lg(u/n))

using Jensen’s inequality. In particular, we must encode the length of the new branch

for s. Essentially, we are encoding n items out of a universe of trie bits to indicate

the starting bit position of each branch’s encoding. By Jensen’s inequality, the worst

case for this encoding occurs when all n items encode the length trie/n, requiring at

most n lg(trie/n) ≤ n lg((2
∑

i lg gi)/n) = O(n lg lg(u/n)) bits. We must also know

anc(s), the ancestor we chose to encode from. We remember our choice automatically

according to the first bit of the encoded string—a leading bit of 0 means we chose r

and a leading bit of 1 means we chose l.

For (iii), we analyze this by considering the contribution of |BSD(SL)| at each level

of the binary search tree of S. At level 1, i.e. the root level, |BSD(SL)| is at most

lg(n lg(u/n)) bits. At level i, this contribution is maximized (by Jensen’s inequality)

when all of the 2i−1 contributing terms are equal. (In other words, all trees are the

same size.) Thus, the space usage at level i is bounded by 2i−1 lg((n/2i−1) lg(u/n)).

Summing up, we have

lg n∑

i=1

2i−1 lg
( n

2i−1
lg

u

n

)

= O
(

n lg lg
u

n
+ n
)

,

which is a path recursion sum [GK81].

The above lemma suggests that BSD(S+a) would require fewer than than trie(S+

a) bits, plus O(n lg lg(u/n)) bits for any a. Thus by Corollary 5, mina{|BSD(S + a)|}
is at most gap(S) + O(n lg lg(u/n)) bits. For the rest of the chapter, we assume the

BSD representation for S is based on its best possible shift. Thus, we obtain the

following theorem, which will be used in further construction of our data structures

in Sections 4.4 and 4.5.
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Theorem 17 (BSD). The representation BSD(S) is a fully indexable dictionary

(FID) occupying gap(S)+O(n lg lg(u/n)) bits, while supporting rank and select func-

tions in O(lg n) time.

Next, we describe BSGAP(S), a simple and implementable variant of the BSD(S)

representation that we use in our experimental results in Section 4.6. The key idea

of BSGAP(S) is to directly encode the difference |si − anc(si)| using gap encoding.

Precisely, we replace the encoding si	anc(si) from BSD(S) by dlg(|si−anc(si)|+1)e.

We also store one additional bit to indicate which ancestor encodes si. Using a similar

analysis to that in Lemma 30, we arrive at the following corollary.

Corollary 6. The representation BSGAP(S) is a fully indexable dictionary (FID)

occupying gap(S) + O(n lg lg(u/n)) bits while supporting rank and select functions in

O(lg n) time.

Proof. It suffices to show that for each item si, its encoding in BSGAP is no more

than in BSD. Let gi = |si − anc(si)| be the gap we wish to encode, and let |li| =

lg u − |lcp(si, anc(si))| be the length of its encoding in BSD. Recall that for any

gap gi, |li| must be at least dlg(gi + 1)e bits long. Thus, under a random shift,

|li| can range from dlg(gi + 1)e to lg u bits in length. Since BSGAP encodes si in

the minimum required, we automatically arrive at the first space term gap(S). The

BSGAP representation also requires an additional n bits to indicate which ancestor (of

l or r) encodes the current gap; this is accounted for in the second space term. The

rest of the BSGAP representation follows from BSD.

Though the BSGAP data structure seems to do little more than avoid an arbi-

trary shift, its consequences are far more interesting: BSGAP illustrates that a non-

consecutive gap structure can still achieve gap-style bounds. In a sense, BSGAP

presents a way to store each of the n nodes in a binary search tree for S in fewer

than lg u bits. Moreover, it’s an extremely simple (and implementable) technique.
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4.4 The Fully Indexable Dictionary Structure

In this section, we describe our first main result, Theorem 18. We build a simple

two-level hierarchical framework to obtain a fully indexable dictionary (FID) such

that rank takes AT (u, n) time and select takes O(lg lg n) time. The challenge in

designing such a data structure lies in only spending gap(S) + O(n lg(u/n)/ lg n) +

O(n lg lg(u/n)) bits in the process.

We describe our structure in a bottom-up way. At the bottom level, we store

a BSD dictionary for every dlg2 ne items from set S, each of which can resolve a

rank or select query in O(lg lg n) time. We also store B.first rank along with each

BSD B, where B.first rank is the rank in S of its first item in B. We also keep

an array P [1..dn/ lg2 ne], where P [i] stores a pointer to the ith BSD structure, which

stores the items s(i−1) lg2 n+1, . . . , si lg2 n. This structure alone is sufficient to support

select. In order to support rank, let Ŝ = {si|i mod (lg2 n) = 1} be the set of smallest

items from each BSD. We build an instance of Andersson and Thorup’s predecessor

structure [AT00] on Ŝ, called R. To support rank, we use a lookup dictionary L

from Lemma 28 built on Ŝ as keys with pointers to the corresponding BSD as satellite

data. We denote the process of looking up the satellite data associated with s ∈ Ŝ

by L.lookup(s). Then, rank and select can be solved as follows.

function rank(S, a) {
s← pred(R, a);

B ← L.lookup(s);

return

B.first rank + BSD rank (B, a);

}

function select(S, i) {

j ← di/(lg2 n)e;

B ← P [j];

return

BSD select(B, i−B.first rank + 1);

}

We are almost ready to show the main theorem of this section, but first, we require

the following lemma.
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Lemma 31. Let S1, S2, ..., Sk be a partition of S, with each Si consisting of items of

consecutive ranks in S. Precisely, each Si consists of items sj, sj+1, ..., s` for some

j ≤ `. Then,
∑k

i=1 |BSD(Si)| ≤ gap(S) + O(k lg u) + O(n lg lg(u/n)).

Proof. Let ui = max{s ∈ Si} − min{s ∈ Si} + 1 and ni = |Si|. By Theorem 17,

|BSD(Si)| ≤ gap(Si)+O(ni lg lg(ui/ni)). Thus, the lemma follows since
∑k

i=1 gap(Si) ≤

gap(S)+O(k lg u), and by Jensen’s inequality, we show that
∑k

i=1 O(ni lg lg(ui/ni)) ≤
O(n lg lg(u/n)).

Based on the above lemma, we obtain the main theorem below, along with a

worst-case analysis in Corollary 7, since gap and O(n lg lg(u/n)) are bounded by

O(n lg(u/n)).

Theorem 18. We implement a fully indexable dictionary (FID) using a total of

gap(S)+O(n lg(u/n)/ lgn)+O(n lg lg(u/n)) bits so that rank queries take AT (u, n)

time and select queries take O(lg lg n) time.

Proof. For select, we require O(lg lg n) time to traverse the ith BSD dictionary.

For rank, the time bound is dominated by the predecessor query in R, taking

AT (u, n/ lg2 n) = O(AT (u, n)) time. This shows our time bounds. For our space

bounds, the n/ lg2 n BSD structures require a total of gap(S) + O(n lg(u/n)/ lg n) +

O(n lg lg(u/n)) bits. The array P and the field B.first rank take at most O(n/ lg2 n)×
lg u = O(n lg(u/n)/ lgn) bits in total, proving the theorem.

Corollary 7. We implement a fully indexable dictionary (FID) using no more than

O(n lg(u/n)) bits so that rank queries take AT (u, n) time and select queries take

O(lg lg n) time.

Finally, we capture a technically interesting space-time tradeoff of our FID, ob-

tained by scaling the size of the groupings. This observation implies that the second-
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order space term in our structure can be made arbitrarily small, at the cost of a slight

increase in the query times.

Corollary 8. For any α > 1, we can implement a fully indexable dictionary (FID)

in total space gap(S) + O(n lg(u/n)/ lgα−1 n) + O(n lg lg(u/n)) bits so that the func-

tion rank takes AT (u, n/ lgα n) + O(α lg lg n) time and the function select takes

O(α lg lg n) time.

4.5 The Indexable Dictionary Structure

In this section, we build upon the approach of the last section. We partition S into

lower level BSD structures, each of size at most lg3 n. We use a top level ‘distributor’

structure which enables us to access the correct BSD while answering a query. In

contrast to the last section, if the query item is not present in S, our top level

distributor may not return any associated BSD. Hence, we cannot support rank or

predecessor queries.

Our top level distributor takes O(lg lg n) time to return the correct BSD. This

is less than AT (u, n) time; the partitioning scheme is somewhat more complex than

that in our FID. As a result, we can support partial rank or select queries in O(lg lg n)

time. To manage the space required, we limit the number of partitions to be at most

O(n lg lg n/ lg3 n), so that the overhead incurred by our top level distributor can be

bounded by the same second-order term as in our FID.

Next, we describe our top level distributor structure, which is analogous to the

van Emde Boas (VEB) tree [vEBKZ77]. With this distributor structure, on any given

input x, we can report x is not in S, or obtain the BSD that can contain x efficiently.
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4.5.1 The Top Level Distributor Structure

Our distributor structure is a recursive structure analogous to a VEB tree. Instead

of having O(lg lg u) levels of recursion as in the case for a VEB tree, our distributor

has only h = 3 lg lg n levels. At the top level (Level 1), we have a single distributor

(with parameter p = 0 to be explained shortly) to distribute all items in S. For level

i = 1 to h − 1, a Level i distributor with parameter p connects to some Level i + 1

distributors, which are then used to distribute the items recursively; the parameter p

indicates that all the input items share the same first p bits. At the bottom level

(Level h), a Level h distributor directs the items to their designated BSD structures.

More precisely, for i = 1 to h− 1, a Level i distributor with parameter p = pi works

as follows:

1. Partition the items into groups according to the first pi + (lg u)/2i bits.

2. For each group with more than lg3 n items (which we call a dense group), the

items are passed to a Level i + 1 distributor with parameter p = pi + (lg u)/2i.

3. For all items not in a dense group, they are grouped together.

(a) If the number of items is at most lg3 n, the items are passed to a Level h

distributor with parameter p = pi.

(b) Otherwise, the items are passed to a Level i+1 distributor with parameter

p = pi.

We can easily show the following by the recursive definition above: At a Level i

distributor with parameter p = pi, if we partition the items into groups based on the

first pi +(2 lg u)/2i bits instead, the size of each group is at most lg3 n. Making use of

this fact, a Level h distributor with parameter p = ph partitions the nh input items

into groups based on their first ph + (2 lg u)/2h bits, such that each group is of size
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at most lg3 n. The nh items are then directed to the designated BSD data structures,

with each BSD containing at most O(lg3 n) items. With the above data structure D,

we can find the BSD that can contain x by calling find BSD(D, x) as follows:

function find BSD(D,x) {

D1 ← Level 1 distributor from D;

i← 1, p1 ← 0;

for i = 1 to h− 1

(Di+1, pi+1)← distribute(Di, i, pi, x);

if (Di is a Level h distributor)

ph ← pi, break;

return retrieve BSD(Dh, ph, x);

}

function retrieve BSD(D, p, x) {

L← the LD stored in D;

y ← x[p + 1..p + (2 lg u)/ lg3 n];

return L.lookup(y);

}

The function distribute(Di, i, pi, x) retrieves the Level i + 1 distributor with pa-

rameter p = pi in which x is distributed according to the first pi +(lg u)/2i bits. The

notation x[`..r] (` ≤ r) denotes the substring of the bitstring representation of x,

starting at the `th bit and ending at the rth bit. The function L.lookup(y) returns

lookup(S(L), y) if y ∈ S(L), where S(L) denotes the set of keys stored by L.

Once we obtain the BSD B that can contain x, determining whether x is in B can

be done in O(lg lg n) time. Thus, if find BSD(D, x) can be done in O(lg lg n) time,

the total time to answer member(S, x) is also O(lg lg n).

4.5.2 Distributor Details

In this part, we give details of the distributor that supports distribute(Di, i, pi, x) at

Level i (i ∈ [1, h− 1]) and retrieve BSD(Dh, ph, x) at Level h efficiently. We make

use of an LD of Lemma 28 to achieve this. Based on this implementation, we show

that find BSD(D, x) can be done in O(lg lg n) time.

For i = 1 to h − 1, a Level i distributor with parameter p maintains an LD
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of Lemma 28 that stores the p + (lg u)/2i bits corresponding to a dense group as

keys, and storing the lg u-bit pointer to the corresponding Level i + 1 distributor as

satellite information. It also explicitly stores an ‘escape’ pointer to the Level h or

the Level i + 1 distributor that corresponds to items not in dense groups.

For a Level h distributor with parameter p, we use a different structure. Let nh be

the number of items managed by this distributor. We store the number k of distinct

BSDs containing these nh items and an array A[1..k] storing the pointers to these BSDs.

Recall that all the nh items share the first p bits, and the distributor here distributes

an item into a group according to the first p+(2 lgu)/2h bits. Therefore, we maintain

an LD of Lemma 28 for the (2 lg u)/2h bits that corresponds to a non-empty group,

starting at the (p + 1)st position. For the satellite information, we store the array

entry of the corresponding BSD, which again takes (2 lg u)/2h bits.

A Minor Modification. If each BSD data structure corresponds to items in con-

secutive ranks, we can bound the total space by gap + O(n lg lg(u/n)) bits. Unfortu-

nately, in the current scheme, a BSD data structure directed by a Level h distributor

may not correspond to items of consecutive ranks. For instance, let si and sj be

two items in the same BSD; then at some level, an intermediate item si+1 may be

partitioned into a dense group, while si and sj are items not in the dense group.

Consequently, the intermediate item si+1 is not stored in the same BSD as si and sj.

In order to bound the space as desired, we use a little fix: for each existing BSD

in the current scheme, we split the items into maximal groups of consecutive ranks,

and store each group in a separate BSD. Essentially, we transform the existing BSD

into a list of BSDs so that each new BSD corresponds to items of consecutive ranks.

Then, a Level h distributor now directs the item into one of the k lists of BSDs (as

opposed one of the k BSDs before). We store an array A[1..k] for the pointers to the k

lists; for each list, we store the number k′ of BSDs it contains. (Note that k′ ≤ lg3 n,

159



www.manaraa.com

since the total number of items in a BSD is O(lg3 n).) We also store an array B[1..k′]

such that B[i] stores the pointer to the BSD whose smallest item is the ith smallest

among that of the other BSDs. With the above implementation, distribute(D, i, p, x)

(Lines 3 and 6 in find BSD(D, x)) for each i = 1 to h− 1 can be done in O(1) time.

Then at Level h, we obtain the list of BSDs that can contain x in O(1) time. After

that, we use binary search on x against the smallest items of the BSDs to find the BSD

that can contain x (Line 8). The time required is O(lg k′), which is at most O(lg lg n)

since k′ ≤ lg3 n. Then, find BSD(D, x) can be done in O(lg lg n) time.

4.5.3 Solving Partial Rank and Select Queries

The partial rank query can be readily supported by our data structure in O(lg lg n)

time, as shown in the pseudo-code below. To enable the select query, we additionally

maintain an array F [1..n/ lg3 n] such that F [i] stores a pointer to a list of BSDs

that can contain the items with rank in [(i− 1) lg3 n, i lg3 n]. For each list, we store

number k′′ of BSDs in the list, and an array G[1..k′′] for pointers to the k′′ BSDs such

that G[1].f irst rank < G[2].f irst rank < G[3].f irst rank < ... < G[k ′′].f irst rank.
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Then, select(S, j) can be solved in the following pseudo-code.

function prank(S, x) {

B ← find BSD(D,x);

if (B = null) return -1;

else

r ← B.first rank;

r′ ← BSD rank (B, x);

if ( BSD select(r′, B) = x )

return r + r′ − 1;

else return -1;

}

function select(S, j) {

G← F [dj/ lg3 ne];

k′′ ← the number of BSDs in the list G;

i← BinarySearch(G, k′′, j);

ri ← G[i].f irst rank;

return BSD select(j − ri + 1, G[i]);

}

The function BinarySearch(G, k′′, j) returns i such that G[i].f irst rank < j <

G[i + 1].f irst rank using binary search, which takes O(lg k′′) time. The total time

required for select is O(lg k′′) + O(lg lg n) = O(lg lg n).

4.5.4 Space Analysis

To bound the total space usage, we will make use of the following lemma.

Lemma 32. We show that

1. the total number of distributors,
∑h

i=1 di, is at most O(n lg lg n/ lg3 n), and

2. the total number of BSD data structures is at most O(n lg lg n/ lg3 n).

Proof. For all the distributors in our data structure, we use Dist(r, p, i) to denote the

Level i distributor such that all the items managed by it share the same prefix r of

length p. We call a distributor dense if it manages more than lg3 n items; otherwise,

it is called sparse. Note that sparse distributors only occur at Level h.
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For Level i, the number of dense distributors is at most n/ lg3 n, because the items

they manage are disjoint. Thus, there are at most 3n lg lg n/ lg3 n dense distributors

in total. For each sparse distributor Dist(r, p, h), there must exist a dense distributor

Dist(r, p, i) for some i. We map Dist(r, p, h) to Dist(r, p, i) such that i is maximized.

Note that it is a bijection. Thus, the number of sparse distributors is bounded by

the number of dense distributors, and the first claim follows.

If two consecutive rank items sj and sj+1 are stored in different BSDs, we call

(sj, sj+1) a cut. A cut can happen in one of two ways: (1) if sj and sj+1 come from

two distributors, or (2) if sj and sj+1 come from the same Level h distributor which

is dense. Note that the number of cuts is equal to the number of BSDs. Now, we

count the number of cuts as follows.

For cuts of the first type, consider the smallest level i such that the sj and sj+1

are in different distributors, say D` and Dr. (This implies that they are at the same

Level i−1 distributor.) Then, by the definition of a distributor, either D` or Dr must

be dense. We associate the cut with the dense distributor(s). Then, in this mapping,

a dense distributor can be associated with at most two cuts, namely when it takes

the roles of D` and Dr, respectively. Thus, the number of cuts of the first type is

bounded by the number of dense distributors, which is O(n lg lg n/ lg3 n).

The number of cuts of the second type is, by definition, bounded by O(n/ lg3 n).

Thus, the second claim follows.

Next, we notice that for a particular i, items managed by different Level i dis-

tributors are disjoint. Let di denote the number of Level i distributors in our data

structure. Also, recall that the space for an LD is O(m(q+r)) bits where m is the num-

ber of items, q is the number of bits needed to represent each key (i.e., pi bits for the

LD in a Level i distributor, and 2 lg u/ lg3 n bits for the LD in a Level h distributor),

and r is the number of bits for each satellite data (i.e., lg u bits for the LD in a Level i
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distributor, and 2 lg u/ lg3 n bits for the LD in a Level h distributor). Then, for any i

in [1, h− 1], the space occupied by all Level i distributors is equal to the space of LD

for dense groups + space for escape pointers ≤ O(n/ lg3 n× lg u)+di lg u bits. On the

other hand, the space occupied by all Level h distributors is equal to space of LD for

non-empty groups + space for k + space for arrays A[1..k] and k′ + space for arrays

B[1..k′] ≤ O(n×2 lg u/ lg3 n)+dh lg u+O(n/ lg3 n+dh)×lg u+O(n lg lg n/ lg3 n)×lg u

bits, where the inequality follows from Lemma 32.

Next, the extra space needed by the partial rank and select structures is equal to

space for rank of the smallest item of each BSD + space for F [1..n/ lg3 n] and k′′ +

space for G[1..k′′] ≤ O(n lg lg n/ lg3 n)× lg u+ O(n/ lg3 n)× lg u+ O(n lg lg u/ lg3 n)×
lg u bits. The total space requirement for all distributors is at most

∑h
i=1(O(n/ lg3 n)+

di) lg u + O(n(lg lg n)(lg u)/ lg3 n) which is O(n(lg lg n)(lg u)/ lg3 n) +
∑h

i=1 di lg u ≤
O(n(lg lg n)(lg u)/ lg3 n) bits, where the last inequality is based on Lemma 32.

Finally, since the above space terms can be bounded by O(n lg(u/n)/ lg n) and

the space of all the BSD data structures is bounded by gap + O(n lg lg(u/n)) bits

(Lemma 31), we have the following theorem.

Theorem 19. Given a set S of n items from a universe [1, u], we implement an

indexable dictionary (ID) in gap(S) + O(n lg(u/n)/ lg n) + O(n lg lg(u/n)) bits sup-

porting partial rank and select queries in O(lg lg n) time.

4.6 Experimental Results

In this section, we present our experimental results, based on the BSGAP structure from

Corollary 6. Recall that the BSGAP structure is organized similarly to a BSD, but gap

encodes the difference between an item s and its best ancestor anc(s). Section 4.6.1

describes the experimental setup that we use for our results. In Section 4.6.2, we dis-

cuss various issues with the space requirements of our BSGAP structure and give some
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intuition about how to encode the various parts of the BSGAP structure efficiently. In

Section 4.6.3, we describe a further tweakable parameter for our BSGAP structure and

use it as a black box to succinctly encode blocks of data.

Apart from the δ code, the nibble code [BB04], and the nibble4 code we have

mentioned in Section 4.2.1, in this section, we also refer to a number of variations of

prefix codes as follows:

• The delta squared code encodes the value dlg(gi + 1)e using δ codes, followed

by the binary representation of gi. For instance, the delta squared code for 170

is 001 00 1000 10101010.

• The nibble4Gamma encodes the “nibble” part of the nibble4 code using the

γ code instead of unary.8 For instance, the nibble4Gamma code for 170 is

01 0 10101010.

• In case the universe size of the data set is at most 232, we will also have the

fixed5 code which encodes the value dlg(gi + 1)e in binary using five bits. For

instance, 170 is encoded as 01000 10101010.

• For larger universe sizes (such as our 264-sized ones), we use the nibble4fixed

code, a mix of the nibble4 code and the fixed5 code. Here, we encode the

“nibble” part of the nibble4 code using four bits.

For each of these codes, we create a small table of values so that we can decode

them quickly when appropriate. As described in Section 4.3, these tables add negligi-

ble space, and we have accounted for this (and other) table space in the experimental

results that we describe throughout the chapter.

8The “nibble” part will be an integer between 1 and 16. The γ code for an integer x is a unary

encoding of dlg xe followed by the binary encoding of x in dlg(x + 1)e bits.
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4.6.1 Experimental Setup

Our source code is written in C++ in an object-oriented style. The experiments

were run on a Dell PowerEdge 650 with 3 GB of RAM. The machine was running

Centos 4.1, with a gnu g++ 3.4.4 compiler. The data sets used were as follows:

• ip1: List of IP addresses obtained from Duke University’s Computer Science

Department. The list refers to 159,690 IP addresses that hit the Duke CS pages

in the month of January 2005.

• ip2: Similar to ip1, but this list consists of 148,700 IP addresses that hit the

Duke CS pages in February 2005.

• upc 32: List of 100,000 UPC codes obtained from items sold by the Wal-Mart

supermarket that fit in a universe of size 232.

• isbn: List of 390,000 ISBNs of books at the Purdue Libraries in a 32-bit format.

• upc 48: List of 432,223 UPC codes in the original 48-bit format obtained from

items sold by the Wal-Mart supermarket.

• title: List of 256,391 book titles from Purdue Libraries, converted into a

numeric value out of a universe of size 264.

4.6.2 Code Comparisons for Encodings and Pointers

We performed experiments to compare the space/time tradeoffs of using different

encodings in place of nibble4. We summarize those experiments in Figure 4.3. The

figures in the top row show the time required to process 10,000 randomly generated

rank queries with a BSGAP structure using the codes listed, averaged over 10 trials.

The figures in the bottom row show the space (in bits) required to encode the BSGAP
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data structure using the listed prefix codes. Each of the bottom two rows also has

the information-theoretic minimum and gap(S) listed for reference.

It is clear that both fixed5 and nibble4 are very good codes in the BSGAP structure

for the 32-bit case; fixed5 is slightly faster than nibble4, and nibble4 is slightly more

space-efficient. (For the isbn file, nibble4 is significantly more space-efficient.) For

64-bit files, nibble4 is the clear choice. Since our focus is on space efficiency, the rest

of the chapter will build BSGAP structures with nibble4. (For our 64-bit data sets, we

will actually use nibble4fixed.)
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Figure 4.3: Comparison of codes and measures for the data files in Section 4.6.1.

Next, we investigate the cost of these BSGAP pointers and see if a different choice

of code for just the pointers can improve its cost. We summarize the space/time

tradeoffs in Figure 4.5. The figure shows the pointer costs (in bits) of each BSGAP

structure. As we can see, nibble4 and nibble are both space-efficient for the pointer
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Comparison of Prefix Codes
on Gap Stream (Space)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

ip1 ip2 �upc_32 �isbn

S
p

ac
e 

(i
n

 b
it

s)
Gamma
Delta
Delta Squared
Fixed5
Nibble
Nibble4
Nibble4Gamma
Info Min
gap(S)

Comparison of Prefix Codes
on Gap Stream (Space)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

upc_48 title

S
p

ac
e 

(i
n

 b
it

s)

Gamma
Delta
Delta Squared
Nibble
Nibble4
Nibble4Gamma
Info Min
gap(S)

Figure 4.4: Comparison of gap+codes, lg
(

u
n

)
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scribed in Section 4.6.1.

distribution. However, nibble4 is again the logical choice, since it is both the most

space-efficient and very fast to decode. If we remove these pointer costs from the

total space cost for the BSGAP structure, we see that this space is about the same as

encoding the gap stream sequentially ; as such, we can think of the pointer overhead

for BSGAP as a cost to support fast searching.
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Figure 4.5: Comparison of prefix codes for BSGAP pointers for the data files in

Section 4.6.1.

4.6.3 BSGAP: The Succinct Binary-Searchable Black Box

In this section, we focus on the practical implementation of our fully-indexable dictio-

nary, modeled after Corollary 6. To make our practical dictionary, we replace [AT00]

167



www.manaraa.com

with a simple binary search tree, and introduce a new parameter h = O(lg lg n) that

does not affect the theoretical time for BSGAP but provides a noticeable improvement

in practice. For each group of lg2 n items that is stored using BSGAP, we further tune

our structure to resort to a simple sequential encoding scheme when there are at

most h items left to search, where h = O(lg lg n). Theoretically, the time required

to search in the BSGAP structure is still O(lg lg n). We employ this technique when

sequential decoding is fast enough, to avoid writing bits to jump to the right half

of the tree. (We call this the pointer cost.) In our experiments, we actually let h

range up to lg2 n, to see the point at which a sequential decoding of h items becomes

impractical. It turns out that these few adjustments to our theoretical work result

in a fast and succinct practical dictionary.

For the rest of the section, we define a parameter b that governs the number

of items contained in each BSGAP structure and a parameter h that controls the

degree of sequential encoding within a BSGAP data structure, as described above. We

denote a particular configuration of our dictionary structure by D(b, h). Let BB

refer to the data structure in [BB04]. In this framework, BB is a special case of our

dictionary D(b, h) when h = b.

In Figure 4.6, we show a space/time tradeoff for BB and our dictionary. Each

graph plots space vs. time, where the time is that required to process 10,000 randomly

generated rank queries, averaged over five trials. Here, we tune BB to operate on the

same number of items in each block to avoid extra costs for padding and give them the

same benefits as BSGAP receives. For each graph in Figure 4.6, we let the blocksize b

range from [2, 256] and the hybrid value range from [2, b]. We collect time and space

statistics for each D(b, h) data structure. The BB curve is generated from the 256

points corresponding to D(b, b). For the BSGAP curve, we partition the x-axis into

300 partitions and choose the most time-efficient implementation of D(b, h) taking

that much space. Notice that our BSGAP structure converges to BB as we allow more
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space for the data structures, but we have some improvement for extremely small

space.

Since BB is a subcase of our BSGAP structure, one might think that our space-time

curve should never be higher than BB’s. However, the curve is generated with actual

data structures D(b, h) taking a particular space and time. So, the existence of a

point above the BB curve on our BSGAP curve simply means that there exists one

configuration of our data structure D(b, h) which has those particular results.

The parameter h is crucial to achieving a good space/time tradeoff. Notice that

as h increases, the space of D(b, h) decreases because we store fewer pointers in each

BSGAP data structure. One may think of transferring this saved space into entries

in the top level binary search tree to speed up the query time. On the other hand,

the time required to search at the bottom of each BSGAP structure increases linearly

with h. So, there must be some moderate value of h that balances these costs and

arrives at the best space/time tradeoff. Hence, we collect all (b, h) pairs and evaluate

the best candidates among them.

In Figure 4.7, we compare BB and our dictionary for 64-bit data. We plot space

vs. time, where the time is that required to process 1,000 randomly generated rank

queries, averaged over five trials. We collect data for D(b, h) as before, where the

range for b and h for upc 48 is [2, 512] and title is [2, 2048]. Notice that our data

structure provides a clear advantage over BB as the universe size increases.

4.7 Applications of Succinct Dictionaries

In this section, we describe an application of our FID dictionaries to the case of text

indexing. As we mentioned in Sections 3.2.1 and 3.2.2, run-length encoding (RLE)

can be a better choice in some applications, particularly when the input set S is dense

with respect to its universe U . As a slight deviation from the theme of this chapter,
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Figure 4.6: Comparison of BB and BSGAP on 32-bit data files in Section 4.6.1.

we consider encoding schemes to manage these dense data sets.

We describe a new practically-motivated data structure called BSRLE that is a

modification of our BSGAP structure, but it performs well on dense subsets. We then

apply it to text indexes and describe a series of experiments showcasing space/time

tradeoffs. In Section 4.7.1, we describe our experimental setup. Section 4.7.2 de-

scribes the BSRLE data structure; it improves upon the practical dictionary in Sec-

tion 3.2.4 in terms of space, based on our discussions in this chapter. Section 4.7.3

presents some results on an improved csa in comparison with the FM-index [FM05,

FM01].
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Figure 4.7: Comparison of BB and BSGAP on 48-bit and 64-bit data files in Sec-

tion 4.6.1.

4.7.1 Experimental Setup

Our source code is written in C++ in an object-oriented style. The experiments were

run on a Dell PowerEdge 650 with 3 GB of RAM. The machine was running Centos

4.1, with a gnu g++ 3.4.4 compiler. We chose data sets that were large enough

to observe the space/time tradeoffs, since the minimum indexing overhead can be

significant with respect to the file size. (For instance, we use tables to quickly decode

our prefix codes, such as nibble4 and the γ code. These tables, which are normally

negligible in size for larger files, may be significant for small file sizes.)

• alice29.txt: An ASCII version of the book “Alice in Wonderland” from the

Canterbury corpus, with an original file size of 152,089 bytes.

• E.coli: DNA sequence for the virus E.coli. The original file size is 4,638,690

bytes of space.

• dblp.50MB: XML file that provides bibliographic information on major com-

puter science journals and proceedings obtained from dblp.uni-trier.de.

Downloaded on September 27, 2005 and consisting of exactly 52,428,800 bytes

of data.

171



www.manaraa.com

• english.50MB: Concatenation of English text files selected from etext02 to

etext05 collections of the Gutenberg Project. The headers from the project

were removed, to leave the actual text. Downloaded on May 4, 2005, and

consisting of exactly 52,428,800 bytes of data.

4.7.2 Binary Searchable Run-Length Encoding

Before describing our BSRLE data structure, we briefly review run-length encoding.

We can represent a set S (with n items) out of a universe U of size u using a bitvec-

tor B of length u, where each 1 represents an item in set S. Run-length encoding

represents each subsequence of identical bits (a run) in B as the pair (`, b), where `

is the number of times that bit b is repeated. We can avoid encoding b by explicitly

storing the first bit, since b will alternate between 0 and 1. Suppose (without loss of

generality) the bitvector B corresponding to the set S is

B = 0`11`20`3 . . .1`2n1 ,

where n1 is the number of runs of 1s in B. We define the RLE measure as

rle(S) =

2n1∑

i=1

dlg(`i + 1)e.

In the rest of Section 4.7, we will use the γ code to store the length `, since it is

useful in the text indexing setting, as shown in Section 3.2.2.

Now we describe how to build the BSRLE data structure. We build a modified

subset S ′ of size n1 corresponding to B. For each run of 1s, we add a single candidate

item to S ′. A candidate item ri is either the first or last 1 in run i. (We describe which

one to choose when we build BSRLE.) We then write the representation BSRLE(S),

which is a modified version of the encoding of BSGAP(S ′) for the set S ′. We reuse the

notation for SL and SR from BSD and BSGAP, where SL contains the subset of items
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from S from runs 1 to dn1/2e − 1, and SR contains the items from runs dn1/2e + 1

to n1.

The BSRLE encoding is defined as

BSRLE(S) = 〈rdn1/2e	anc(rdn1/2e); `dn1/2e−1; pdn1/2e; |BSRLE(SL)|; BSRLE(SL); BSRLE(SR)〉,

where the candidate element rdn1/2e is stored using the γ code, `dn1/2e − 1 indicates

the number of 1s in the dn1/2eth run (not counting the candidate), stored using

the γ code, and pdn1/2e indicates the number of 1s in S in the left subtree SL of

the dn1/2eth run, not counting other candidate items. (In other words, it stores the

number of RLE-encoded items that are in SL.) We store pdn1/2e using the nibble4

code.

Now we explain how to choose the candidate element ri. If anc(ri) > ri, ri is the

last 1 in run i; otherwise, it is the first 1 in run i. Computing ri in this way saves

space in the encoding, but for ease of exposition, we assume that ri is the first 1 in

run ri, since the first 1 can easily be determined using the candidate element and `i.

We compute anc(ri) by building the ancestor set Ai as we did for BSD. However, at

each ancestor node rj (corresponding to the jth run) for ri, we insert both the values

corresponding to the first 1 in run rj and the last 1 in run rj into the ancestor set Ai.

Given BSRLE(S), rank(S, a) and select(S, i) can be computed in O(lg n1) time

by calling the functions rrank(BSRLE(S), a, 0, u, n1), rselect1(BSRLE(S), i, 0, u, n1)

and rselect0(BSRLE(S), i, 0, u, n1) detailed below. (As usual, rank0(S, a) = a −
rank1(S, a).) In the pseudocode, the function decode node(B) returns the values

ri, `i, and pi for the ith node. (The techniques used to decode this information are

similar to BSD.) The variables la and ra refer to the left and right ancestors of the

current run, respectively.
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function rrank(B, a, la, ra, n) {

if (n = 0) return 0;

r, `, p← decode node(B);

if (a < r)

return rrank(BSRLE(SL), a, la, r, dn/2e − 1);

else if (a < r + `) return dn/2e + p + (a− r);

else return dn/2e + p+

rrank(BSRLE(SR), a, r + `− 1, ra, n− dn/2e);
}

function rselect1(B, i, la, ra, n) {

r, `, p← decode node(B);

c← dn/2e + p;

if (i < c)

return rselect1(BSRLE(SL), i, la, r, dn/2e − 1);

else if (i < c + `) return r + (i− c);

else return

rselect1(BSRLE(SR), i− c− `, r + `− 1, ra, n− dn/2e);

}
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function rselect0(B, i, la, ra, n) {

r, `, p← decode node(B);

c← r − (dn/2e+ p);

if (n = 0)

if (i > c)

return r + (i− c);

if (i < c)

return la + i;

if (i < c)

return rselect0(BSRLE(SL), i, la, r, dn/2e − 1);

else if (i > c) return

rselect0(BSRLE(SR), i− c, r + `− 1, ra, n− dn/2e);

}

Compared to the practical dictionaries from Section 3.2.4, the BSRLE(S) encoding

uses the same space to encode the run-length values for 0 and 1. However, the

practical dictionaries store prefix sums for both 0 and 1, whereas we only store them

for 1s. Moreover, since our prefix sums are localized, we save even more space. In

addition, we have a clear space/time tradeoff: our data structure operates in O(lg n1)

time (which is less than BSGAP’s O(lg n) time if n1 is small enough), however, we may

spend more time on each step since we decode more γ codes. We summarize its

achievements in the following lemma.

Lemma 33 (BSRLE). The representation BSRLE(S) is a fully indexable dictio-

nary (FID) occupying rle(S) + O(n lg lg(u/n)) bits while supporting rank and select

functions in O(lg n1) time, where n1 is the number of runs of 1s in the bitvector

representation of S.

Proof. This proof follows from the proof of Lemma 30 and Theorem 17. Our BSRLE
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encoding achieves rle(S) space by construction, since the run-lengths for the 1s are

stored explicitly, and the run-lengths for the 0s are stored implicitly by the encoding

of BSGAP(S ′). The only additional cost we have is to store pi, which is roughly the

number of 1s in SL (the left subtree of ri); the encoding of pi over all nodes can be

bounded by the pointer cost (to jump to the right subtree), and takes at most O(n)

bits of space.

4.7.3 Experimental Results

In this section, we apply our BSRLE data structure to the text indexing problem. In

particular, we improve upon the implementation of compressed suffix arrays from

Chapter 3 and compare it to the FM-index[FM05, FM01], a state-of-the-art data

structure with good theoretical results and practical performance. We make use of

the hybrid value h and block length b in tweaking the BSRLE structure, just as we did

with BSGAP. Throughout our experiments with BSRLE, we use nibble4 to represent

pointers and auxiliary information, and γ codes to represent the actual RLE lengths.

For both codes, we maintain a small table of values to facilitate fast decoding; these

tables contribute negligible space, and our experimental results account for these

costs.

Our goal is to index the text T of length u. We replace each of the practical

dictionaries from the earlier csa implementation (that were used in the wavelet tree)

with our new BSRLE dictionaries. This application was the main motivation for

developing BSRLE dictionaries. We also redefined the fractional cascading that links

these BSRLE dictionaries together to improve the sequential searches in the wavelet

tree.

We also drastically speed up the decoding of LCP values that are needed by

the csa. To review, store the LCPs using Sadakane’s method [Sad02b]. However, we
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cannot afford to store all 2u bits required. Instead, we store only LCP values larger

than 2 lg u. To reduce query time, we also store a few dictionaries that keep track of

small LCP values. In particular, we maintain a dictionary Di drawn from a universe

of size u, such that its entries correspond to the positions with an LCP value of i. We

store a series of these dictionaries D1, D2, . . . , Dl, where l is a tweakable parameter

that presents space/time tradeoffs.

The LCP lookup proceeds by finding out how many 1 bits appear in Di within

the range corresponding to the two strings in the LCP query. If there are none, we

proceed with the search in the next dictionary Di+1. Once we run out of dictionaries

to search, we preform an inverse suffix array query (SA−1) to get the location of the

two suffixes that start at the lth position in the original query suffixes. Then we reuse

our original series of l dictionaries. This process avoids the (relatively) slow lookup

time for Φ(i), at a cost of some additional storage.

We can organize this series of dictionaries Di in terms of an LCP wavelet tree,

providing, in theory, many of the benefits we have described earlier for wavelet trees.

The main advantage here is in improving the time bound—it’s not clear whether an

entropy bound makes sense for the storage of LCP values. In practice, short LCP

values are much more common and need to be retrieved in O(1) time, rather than

the O(lg l) time for this wavelet tree.

The FM-index uses three parameters in optimization: a two-phase bucketing stage

that is similar to our BSRLE structure (but lacking the tuned top level with gap

encodings), and a frequency percentage f . Suppose f is 2% (the default for the

FM-index implementation). The index inserts a special unique symbol at regular

intervals in text T such that the total number of symbols is 2% of the text length.

This puts a maximum on the number of symbols that the FM-index has to decode,

and it addresses the same problem that we were trying to address earlier by explicitly

storing LCP values. As f increases, the fewer symbol decodings are needed; however,

177



www.manaraa.com

this method requires additional (tuneable) space. We also use this idea when tuning

our data structure.

In Figure 4.8, we show a space/time tradeoff for our improved csa and the FM-

index. Each graph plots space vs. time for either count or locate queries. Each

row of graphs shows the results for the files alice29.txt, E.coli, dblp.50MB, and

english.50MB, respectively. (Each file is described in Section 4.7.1.) We performed

count and locate on 1, 000 randomly generated patterns P , averaged over five trials.

The time reported for count is the number of milliseconds (msec) required per symbol

of the input pattern P , and the time for locate is the number of milliseconds required

per occurrence of P in text T .

To generate each curve in the graphs, we generate all possible data structures

using the various parameters for each implementation. Then, we partition the x-axis

and chose the most time-efficient implementation of csa and FM-index taking that

much space. Notice that our csa data structure is competitive with the FM-index

for nearly all ranges, although it is slightly slower as we increase the space allowed.

However, what is most interesting is its behavior when we allow a minimum of extra

bits of space. For this case, our data structure presents the fastest implementation

for extremely succinct space.

4.8 Conclusions

In this chapter, we have formalized and developed measures for analyzing the space

needed to store set data. These measures can provide a framework for further investi-

gation of compressed data structuring techniques. We have achieved a fully indexable

dictionary that operates in near-optimal time (AT (u, n)) to support rank, select, and

predecessor queries, while just taking gap + O(n lg(u/n)/ lgn) + O(n lg lg(u/n)) bits

of storage. This result improves a number of compressed data structures [RRR02,
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AT00, BB04] by reducing space usage, while maintaining nearly-optimal time bounds.

Our gap term has a constant of 1, which is extremely important when considering

matters of space efficiency. Equally important are the properties of the other space

terms—if n = o(u), they amount to o
(
lg
(

u
n

))
bits. Also, our dictionary is the first

that achieves O(n lg(u/n)) bits of space, without significantly sacrificing the query

times. (Recall that we take AT (u, n) ≥ BF (u, n) time.) We also provide an in-

dexable dictionary which operates in gap + O(n lg(u/n)/ lgn) + O(n lg lg(u/n)) bits

and supports queries in O(lg lg n) time. We conjecture that if the space for an ID is

measured in terms of gap, O(1) query time may not be possible to achieve. Since the

gap measure inherently exploits the encoding of items with respect to other items,

O(1) decoding time of an item (and thus searching) is not straightforward.

In addition, we have shown evidence that data-aware measures (such as gap) tend

to be smaller than combinatorial measures on real-life data. Employing techniques

that exploit the redundancy of the data can lead to more succinct data structures

and a better understanding of the underlying information. As such, we encourage

researchers to develop theoretical results with a data-aware analysis. In particular,

our BSGAP data structure, along with BB (proposed in [BB04]) are extremely succinct

in practice for sparse data sets. In addition, we provide some evidence that BSGAP

is less sensitive than [BB04] to an increase in the size of the universe. Finally, we

provide some useful information on the relative performance of prefix codes with

respect to compression space and decompression time.

There are two open problems. Is it possible to give an indexable dictionary with

query times further reduced, and with space measured in a data-aware manner?

Another problem is whether we can extend our data structures to support dynamic

operations.
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Figure 4.8: Comparison of csa and FM-index on count and locate.
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Chapter 5

Dynamizing Succinct Data Structures

5.1 Introduction

The new trend in indexing data structures is to compress and index data in one shot.

The ultimate goal of these compressed indexes is to retain near-optimal query times (as

if not compressed), yet still take near-optimal space (as if not an index). A few pioneer

results are [GV00, GGV03, FM05, RRR02, GMR06, FLMM05]; there are many others. For

compressed text indexing, see Navarro and Mäkinen’s excellent survey [NM06a].

Progress in compressed indexing has also expanded to more combinatorial structures,

such as trees and subsets. For these succinct data structures, the emphasis is to store

them in terms of the information-theoretic (combinatorial) minimum required space with

fast query times [RRR02, Jac89b, HMP01]. Compressed text indexing makes heavy use of

succinct data structures for set data, or dictionaries.

The vast majority of succinct data structuring work is concerned largely with static

data. Although the space savings is large, the main deterrent to a more ubiquitous use

of succinct data structures is their notable lack of support for dynamic operations. Many

settings require indexing and query functionality on dynamic data: XML documents, web

pages, CVS projects, electronic document archives, etc. For this type of data, it can be

prohibitively expensive to rebuild a static index from scratch each time an update occurs.

The goal is then to answer queries efficiently, perform updates in a reasonable amount of

time, and still maintain a compressed version of the dynamically-changing data.

In that vein, there have been some results on dynamic succinct bitvectors (dictionar-

ies) [RRR01, HSS03, NM06b]. However, these data structures either perform queries in

far from optimal time (in query-intensive environments), or allow only a limited range of

dynamic operations (“flip” operations only). Here, we consider the more general update
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operations consisting of arbitrary insertion and deletion of bits, which is a central chal-

lenge in dynamizing succinct data structures for a variety of applications. We define the

dynamic text dictionary problem: Given a dynamic text T of n symbols drawn from an

alphabet Σ, construct a data structure (index) that allows the following operations for any

symbol s ∈ Σ:

• rank s(i) tells the number of s symbols up to the ith position in T ;

• selects(i) gives the position in T of the ith s;

• char (i) returns the symbol in the ith position of T ;

• inserts(i) inserts s before the position i in T ;

• delete(i) deletes the ith symbol from T .

When |Σ| = 2, the above problem is called the dynamic bit dictionary problem. For the

static case, [RRR02] solves the bit dictionary problem using nH0 + o(n) bits of space and

answers rank and select queries in O(1) time, where H0 is the 0th order empirical entropy

of the text T . The best known time bounds for the dynamic problem are given by [NM06b],

achieving O(lg n) for all operations.1

The text dictionary problem is a key tool in text indexing data structures. For the static

case, Grossi et al. [GGV03] present a wavelet tree structure that answers queries in O(lg |Σ|)

time and takes nH0 + o(n lg |Σ|) bits of space. Golynski et al. [GMR06] improve the query

bounds to O(lg lg |Σ|) time, although they take more space, namely, n lg |Σ| + o(n lg |Σ|)

bits of space. Nevertheless, their data structure presents the best query bounds for this

problem.

Developing a dynamic text dictionary based on the wavelet structure can be done readily

using dynamic bit dictionaries (as is done in [NM06b]) since updates to a particular symbol s

only affect the data structures for O(lg |Σ|) groups of symbols according to the hierarchical

decomposition of the alphabet Σ. The solution to this problem is given by Mäkinen and

Navarro [NM06b], with an update/query bound of O(lg n lg |Σ|). These bounds are far from

optimal, especially in query-intensive settings. On the other hand, the best known query

1There is another data structure proposed in [HSS03], requiring non-succinct space.
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bounds for static text dictionaries are given by [GMR06], which treats each symbol in Σ

individually; an update to symbol s could potentially affect Σ different data structures, and

thus may be hard to dynamize.

We list the following contributions of this chapter:

• We develop a general framework to dynamize many succinct data structures like

ordinal trees, labeled trees, dictionaries, and text collections. Our framework can

transform any static succinct data structure D for a text T into a dynamic succinct

data structure. Precisely, if D supports rank s, selects, and char queries in O(t(n))

time and takes s(n) bits of space, the dynamic data structure supports queries in

O(t(n)+lg lg n) time and updates in amortized O(nε) time and takes just s(n)+o(n)

bits of space.

• Our results represent near-optimal tradeoffs for update/query times for the dynamic

text (and bit) dictionary problem. (For lower bound, see [PD06].)

• We provide the first succinct data structure for the dynamic bit dictionary problem.

Our data structure takes nH0 + o(n) bits of space and requires O(lg lg n) time to

support rank s, selects, and char queries while supporting updates to the text T in

amortized O(nε) time.

• We provide the first near-optimal result for the dynamic text dictionary problem on

a dynamic text T . Our data structure requires n lg |Σ|+ o(n lg |Σ|) bits of space and

supports queries in O(lg lg n) time and updates in O(nε) time. When |Σ| = polylg(n),

we can improve our query time to O(1).

• Our framework can dynamize succinct data structures for labeled trees, text collec-

tions, and XML documents.

The work done in this chapter is a collaborative effort with Wing-Kai Hon, Rahul Shah,

and Jeffrey Scott Vitter.
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5.1.1 Outline

In Section 5.2, we summarize some existing results including the RRR data structure [RRR02],

some static text dictionaries [GGV03, GMR06], and some brief construction bounds. Sec-

tion 5.3.1 describes our BitIndel data structure, which solves the dynamic bit dictionary

problem. Section 5.3.3 describes the first part of our dynamic text dictionary; we describe

inX, which keeps track of where the original text T has been updated. In Section 5.3.4, we

then describe onlyX, which actually stores the updates themselves. The onlyX structure is

a non-succinct data structure of independent interest that solves the dynamic text dictio-

nary problem. In Section 5.5, we apply our dynamic bit and text dictionaries to dynamize

ordinal trees, labeled trees, and the XBW transform [FLMM05].

5.2 Preliminaries

We summarize several important static structures that we will use in achieving the dynamic

results. The proofs of their construction are omitted due to space constraints. In the rest

of this chapter, we refer to a static bit or text dictionary D, that requires s(n) bits and

answers queries in t(n) time.

Lemma 34 ([RRR02]). For a bitvector (i.e., |Σ| = 2) of length n, there exists a static

data structure D called RRR solving the bit dictionary problem supporting rank , select,

and char queries in t(n) = O(1) time using s(n) = nH0 + O(n lg lg n/ lg n) bits of space,

while taking only O(n) time to construct.

Lemma 35 (Section 2.4.3). For a text T of length n drawn from alphabet Σ, there exists a

static data structure D called the wavelet tree solving the text dictionary problem supporting

rank s, selects, and char queries in t(n) = O(lg |Σ|) time using s(n) = nH0 +o(n lg |Σ|) bits

of space, while taking O(nH0) time to construct. When |Σ| = polylg(n), we can support

queries in t(n) = O(1) time.

Lemma 36 ([GMR06]). For a text T of length n drawn from alphabet Σ, there exists

a static data structure D called GMR that solves the text dictionary problem supporting
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selects queries in t1(n) = O(1) time and rank and char queries in t2(n) = O(lg lg |Σ|) time

using s(n) = n lg |Σ|+o(n lg |Σ|) bits of space, while taking O(n lg n) time to construct.

We also use the following static data structure called prefix-sum (PS) as a building block

for achieving our dynamic result. Suppose we are given a non-negative integer array A[1..t]

such that
∑

i A[i] ≤ n. We define the partial sums P [i] =
∑i

j=1 A[i]. Note that P is a

sorted array, such that 0 ≤ P [i] ≤ P [j] ≤ n for all i < j. A prefix-sum (PS) structure on A

is a data structure that supports the following operations:

• sum(j) returns the partial sum P [j];

• findsum(i) returns the index j such that sum(j) ≤ i < sum(j + 1).

To support sum, we simply store array P explicitly, requiring O(t lg n) bits of space.

To support findsum , we take the t prefix sums and cluster them into consecutive groups of

size O(lg2 n). Within a group, we use a balanced binary search tree to support findsum in

O(lg lg n) time in the standard way. Now we must determine which group to search for a

given query. From each of the O(t/ lg2 n) groups, we store the largest prefix sum using a

hashing implementation of a van Emde Boas (VEB) data structure. For the hashing, we

use [HMP01] (Theorem 1.1), so that we can construct the hash table deterministically in

O(t) time and taking O(t) bits of space. Along with each entry in the hash table, we also

store a pointer to its associated group to search further. To answer findsum(i), we search

the VEB structure to find the right group in O(lg lg n) time. We then follow the pointer to

the binary search tree and spend an additional O(lg lg n) time.

Using [HSS03], we can support findsum(i) in O(1) time in the special case where each

array entry A[j] is between x and cx; c is a positive constant integer and x is a positive

integer. We briefly sketch the idea now. To support findsum , we partition the universe n

into n/x blocks of length x. Since each A[j] ranges from x to cx, the partial sums P [j]

are within c blocks of one another. Thus, n/x = ct. For the jth block, we explicitly

store B[j] = findsum(xj) using O(lg t) bits. To answer findsum(i), we first navigate to the

di/xeth block and retrieve the explicit solution r = B[di/xe] contained there. If P [r+1] ≤ i,

we return r +1. Otherwise, we know that we are within x of the correct prefix sum and we
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return r (because P [r + 1]− P [r] ≥ x). We will require O(ct lg t) bits of space to store the

array B. Thus, we can write the following lemma.

Lemma 37. Let A[1 . . . t] be a non-negative integer array such that
∑

i A[i] ≤ n. There

exists a data structure PS on A that supports sum and findsum in O(lg lg n) time using

O(t lg n) bits of space and can be constructed in O(t) time. In the particular case where

x ≤ A[i] ≤ cx for all i, where x is a positive integer and c ≥ 1 is a positive constant integer,

sum and findsum can be answered in O(1) time.

Proof. The proof follows from the above discussion, where we explicitly store the array P

and the array B for each of the ct blocks.

We also make use of a data structure called the Weight Balanced B-tree (WBB tree),

which was used in [RRR01, HSS03]. We use this structure with Lemma 37 to achieve O(1)

time. A WBB tree is a B-tree defined with a weight-balance condition. A weight-balance

condition means that for any node v at level i, the number of leaves in v’s subtree is between

0.5bi + 1 and 2bi − 1, where b is the fanout factor. Insertions and deletions on the WBB

tree can be performed in amortized O(lgb n) time while maintaining the weight-balance

condition.

We use the WBB tree since it ensures that x ≤ A[i] ≤ cx where c is a positive constant

integer, thus allowing constant-time search at each node. However, a simple B-tree would

require O(lg lg n) time in this situation. Also, WBB trees are a crucial component of the

onlyX structure, described in Section 5.3.4. WBB trees are also used in Section 5.3.1

(although B-trees could be used here).

We define a weight balanced B-tree as follows: all leaves of the WBB tree are considered

to be at level 0. A level-i node is connected to its parent node at level i + 1. We define

a weight-balance condition, such that for any node v at level i, the number of leaves in v’s

subtree is between 0.5bi +1 and 2bi−1, where b is the fanout factor. Thus, the degree of an

internal node is Θ(b) (from b to 4b), such that the height of the tree is Θ(lgb n′), where n′

is the number of leaves in the current tree.
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After a leaf is inserted into the tree, the weight-balance condition of some level-i ancestor

of the leaf, say v, may be violated. Precisely, this case happens when the number of leaves

in v’s subtree is 2bi. In this case, v will be split into two new nodes at the same level (called

a split operation), each of them becoming the root of a perfect subtree with bi leaves.

(This split could cause a restructuring of the entire subtree that was split, but this follows

standard techniques.)

On the other hand, in case a leaf is deleted, the weight-balance condition of v at level i

may be violated; that is, the number of leaves in v’s subtree becomes 0.5bi. In this case, v

is merged with one of its neighboring siblings, and there will be two cases:

(i) if the total number of leaves after merging is less than 1.5bi, the update finishes

(called a merge operation);

(ii) otherwise, the merged node is further split into two nodes, each of them becoming the

root of a subtree with half the number of leaves (called a merge-then-split operation).

Based on the above updating process, we have the following lemma and corollary.

Lemma 38. Except the root, when a node v at level i violates the weight-balance condition,

at least Θ(bi) leaves are inserted or deleted in v’s subtree since the creation of v.

Proof. A node is created when there is either a split, merge, or merge-then-split event. As

a result, node v contains at least 0.75bi leaves (by merge-then-split) and at most 1.5bi leaves

at its creation. Thus, at least 0.25bi leaves are deleted or at least 0.5bi leaves are inserted

before v can violate the weight-balance condition.

Corollary 9. Suppose that ci is the maximum cost of a split, a merge, or a merge-then-

split operation when a level-i node violates the weight-balance condition. The amortized

cost for supporting the above operations due to an insertion or deletion of a leaf is at most

Θ(
∑h

i=1 ci/b
i), where h denotes the current height of the tree.

Proof. We prove this result by a simple accounting method. A node is created with zero

tokens; when a leaf is inserted or deleted, it gives each of its level-i ancestors Θ(ci/b
i)
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tokens (precisely, 4ci/b
i tokens for deletion and 2ci/b

i tokens for insertion). Thus, the total

number of tokens given is Θ(
∑h

i=1 ci/b
i) during an insertion or deletion operation. It is easy

to verify that there are at least ci tokens when a node at level i violates the weight-balance

condition. In other words, an amortized cost of Θ(
∑h

i=1 ci/b
i) for leaf insertion or deletion

is enough to support split, merge, or merge-then-split operations.

5.3 Data Structures

There are several data structures that support rank s and selects queries. They are broadly

based on two different approaches: logarithmic, which creates a binary search tree with a

height of lg |Σ| with each symbol’s occurences stored in the leaves; and log-logarithmic,

which is based on predecessor search and VEB. Despite the faster access of the log-

logarithmic approach, it is difficult to update since each symbol s ∈ Σ is treated separately

and updating one symbol will affect the data structure for all other symbols. In contrast

logarithmic approaches need only manage updates in a particular root-to-leaf path of their

binary search tree, so that only O(lg |Σ|) internal nodes are affected for each update.

Our solution is built with three main data structures:

• BitIndel : bitvector supporting insertion and deletion, described in Section 5.3.1;

• StaticRankSelect : static text dictionary structure supporting rank s, selects, and char

on a text T ;

• onlyX : non-succinct dynamic text dictionary, described in Section 5.3.4.

We use StaticRankSelect to maintain the original text T ; we can use any existing

structure such as GGV or GMR mentioned in Section 5.2. For ease of exposition, unless

otherwise stated, we shall use GMR [GMR06] in this section. We keep track of newly in-

serted symbols N in onlyX such that after every O(n1−ε lg n) update operations performed,

updates are merged with the StaticRankSelect structure. Thus, onlyX never contains more

than O(n1−ε lg n) symbols. We maintain onlyX using O(n1−ε lg2 n) = o(n) bits of space.

Finally, since merging N with T requires O(n lg n) time, we arrive at an amortized O(nε)
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time for updating these data structures. BitIndel is used to translate positions pt from the

old text T to the new positions pt̂ from the current text T̂ . (We maintain T̂ implicitly

through the use of BitIndel structures, StaticRankSelect, and onlyX.)

5.3.1 Bitvector Dictionary with Indels: BitIndel

In this section, we describe a data structure (BitIndel) for a bitvector B of original length n

that can handle insertions and deletions of bits anywhere in B while still supporting rank

and select on the updated bitvector B ′ of length n′. The space of the data structure is

n′H0 + o(n′). When n′ = O(n), our structure supports these updates in O(nε) time and

rank and select queries in O(lg lg n) time. (In [HSS03], Hon et al. propose a non-succinct

BitIndel structure taking n′ + o(n′) bits of space.)

Formally, we define the following update operations that we support on the current

bitvector B ′ of length n′:

• insert b(i) inserts the bit b in the ith position;

• delete(i) deletes the bit located in the ith position;

• flip(i) flips the bit in the ith position.

For bitvector B ′, we construct a B-tree T with fanout between [nε, 2nε], for a fixed

ε > 0. The leaves of T maintain contiguous chunks of B ′ ranging from [nε, 2nε] in size, such

that the `th (leftmost) leaf corresponds to the `th chunk of B ′. Each leaf ` maintains an

RRR [RRR02] data structure `.R that answers rank and select queries on its O(nε)-sized

chunks in O(1) time. Each internal node v of T maintains three arrays: count 0, count1,

and size. Let cj denote the jth child node of v. The entry count 0[j] is the number of 0s in

the part of the bitvector in the subtree of cj . The entry count1[j] is the number of 1s in

the part of the bitvector in the subtree of cj . The entry size[j] is the total number of bits

in the subtree of cj . To have fast access to this information at each node, we build a PS

structure on this information. (We don’t actually store count 0, count1, and size explicitly;

rather, we store a PS structure for each array.)

The height of this tree is O(lgn n′). To traverse down to a leaf for any operation, we
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use the PS structure at a node (using O(lg lg n) time) to determine the next node to visit

on the root-to-leaf path. Then, we query our RRR [RRR02] data structure `.R at leaf `

and return the answer. Now we describe our operations in more detail.

function v.rank s(i) {

if (leaf (v)) return v.R.rank s(i);

j ← v.size.findsum(i);

return v.count s.sum(j)+

cj+1.rank s(i− v.size.sum(j));

}

function v.select s(i) {

if (leaf (v)) return v.R.select s(i);

j ← v.count s.findsum(i);

return v.size.sum(j)+

cj+1.selects(i− v.count s.sum(j));

}
Let r be the root node of T . Then, rank s(i) is answered by invoking r.rank s(i), and

selects(j) is answered by invoking r.select s(j).

Time Bounds. Each of the rank s and selects queries requires O(lg lg n) time per node

traversed in the B-tree T . Since there are at most O(lgn n′) such nodes before encountering

a leaf, the total time is O((lgn n′) lg lg n).

Updates. The flip(i) operation can be supported by performing a constant number of

insert , delete , and rank operations. So, for updates, we consider only insert and delete. At

every update operation, we traverse the B-tree as before. The prefix-sum data structures

in each internal node along the path are rebuilt in O(nε) time per node. At the leaf, R

is rebuilt. If the leaf node manages more than 2nε symbols or less than nε, we invoke the

standard B-tree merge/split routines, propagating them up the tree as appropriate. In the

worst case, updates take O(nε lgn n′).

Space. There are at most O(n′/n2ε) internal nodes (recall that each leaf in the tree

corresponds to a chunk of O(nε) bits), each taking O(nε lg n′) bits. Thus, the total space

for the internal nodes is O((n′/nε) lg n′). Let n1 be the number of 1s in B ′. The space for

the bottom-level R structures can be bounded by dlg
(n′

n1

)
e+o(n′) bits. As seen in [GGV03],

we can write the contribution as n′H0 + o(n′) bits.
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Lemma 39. Given a bitvector B ′ with length n′ and original length n, we can create a

data structure that takes n′H0 +o(n′) bits and supports rank and select in O((lgn n′) lg lg n)

time, and indel in O(nε lgn n′) time. When n′ = O(n), our time bounds become O(lg lg n)

and O(nε) respectively.

The prefix sum data structure used inside the B-tree is the main bottleneck to query

times, allowing us only O(lg lg n) time access. However, if we store three WBB-trees, then

separately in each of them the special condition from Lemma 37 can be met allowing us

O(1) queries on prefix sum structures. We describe this result in the following section.

5.3.2 Constant-Time BitIndel

In this section, we describe a constant-time query BitIndel data structure for bitvector B of

original length n that can handle insertions and deletions of bits anywhere in B while still

supporting rank and select on the updated bitvector B ′ of length n′. When n′ = O(n), our

structure supports these updates in O(nε) time and rank and select queries in O(1) time.

We modify BitIndel to perform O(lgn n′) query time by taking three times as much

space, i.e., 3nH0 + o(n) bits. We briefly overview the scheme and the results and then give

the details. Instead of a single B-tree, we store three WBB trees, weight balanced by size,

count0, and count1. With this new design, both sum and findsum queries within a node

can be performed in O(1) time as each array entry A[i] of the corresponding size, count 0,

and count 1 arrays is between x and 2x for some non-negative integer x [HSS03]. The rank

queries will be answered using the WBB for size, while select s will be answered with the

WBB for count s.

For bitvector B ′, we construct three WBB Trees U, V,W whose leaves maintain contigu-

ous chunks of B ′, such that the `th (leftmost) leaf corresponds to the `th chunk of B ′. For

the moment, assume that each leaf ` maintains its associated chunk of B ′ explicitly. The

internal leaves of U, V,W each maintain the three arrays, count 0, count1, and size. (Defini-

tions are similar to above.) However, U is weight-balanced on count 0, V is weight-balanced

on count1, and W is weight-balanced on size. To summarize, we have the following trees:
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• WBB tree U , where the internal node v is weight-balanced on the array count 0;

• WBB tree V , where the internal node v is weight-balanced on the array count 1; and

• WBB tree W , where the internal node v is weight-balanced on the array size.

Queries. Queries are performed as usual, where W answers rank s queries by traversing

according to the array size and returning rank s information by performing sum on the

counts array in internal nodes, plus the rank information from the explicitly-stored chunk

of B′ at the leaf. For select s, we consult the WBB tree storing count s and return select s

information by performing sum on the size array in internal nodes, plus the select infor-

mation from the explicitly-stored chunk of B ′ at the leaf. The queries at each level can be

done in constant time using Lemma 37.

Updates. Here, we have to update all three trees. Without loss of generality, suppose

we delete a 1.

• Traverse W by size to the appropriate leaf node and compute rank 0 and rank1. Then

traverse upwards, decrementing the values of count 1 and size appropriately.

• Traverse U by count0 using the rank0 computed in the previous step to arrive at a leaf.

Then traverse upwards, decrementing the values of size and count 1 appropriately.

• Traverse V by count1 using the rank1 computed in the previous step to arrive at a leaf.

Then traverse upwards, decrementing the values of size and count 1 appropriately.

Apart from these updates at non-leaf levels, we need to reconstruct the RRR data

structures stored at leaf-level of the WBB tree also. This can be done easily for W in O(nε)

time. However, for the structures U (and V ) which is weight balanced by count0 (resp.

count1) the leaf level bitvector stored using RRR can be a lot longer than nε bits although it

is guaranteed to have only O(nε) 0s. In such a case, reconstructing RRR structure can take

conceivably a lot more time. We propose a following fix for this situation. Whenever the

length of the bitvector stored is more than O(nε lg2 n) bits we explicitly write the positions

of 0s in an array rather than storing RRR structures. Since the structure U (and V ) is

select only, the query can be easily answered by constant time array lookup. Since bit
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vector of length greater than nε lg2 n is encoded using nε lg n bits, the total space for such

explicit encodings throughout the structure can be captured by o(n′) term. Now updates

of RRR structures can be done in O(nεpolylg(n)). This can be adjusted by using slightly

smaller ε.

Space. Since, we store three structures here (instead of one) the space is 3n′H0 + o(n′)

bits. The rest of the analysis is exactly the same as in the previous subsection and also the

space for explicit array encodings (instead of RRR) can be captures by o(n′) term.

Lemma 40. Given a bitvector B ′ with length n′ and original length n, we can create a

data structure that takes 3n′H0 + o(n′) bits and supports rank and select in O(lgn n′) time,

and indel in O(nε lgn n′) amortized time. When n′ = O(n), our time bounds become O(1)

and O(nε) respectively.

If we change our BitIndel structure such that the bottom-level RRR [RRR02] data

structures are built on [lg2 n, 2 lg2 n] bits each and set the B-tree fanout factor b = 2, we

can obtain O(lg n) update time with O(lg n) query time. In this sense, our BitIndel data

structure is a generalization of [NM06b].

5.3.3 Insert-X-Delete-any: inX

Let x be a symbol other than those in alphabet Σ. In this section, we describe a data

structure on a text T of length n supporting rank s and selects that can handle delete(i)

and insertx(i). That is, only x can be inserted to T , while any characters can be deleted

from T . Notice that insertions and deletions will affect the answers returned for symbols in

the alphabet Σ. For example, T may be abcaab, where Σ = {a, b, c}. Here, ranka(4) = 2

and selecta(3) = 5. Let T̂ be the current text after some number of insertions and deletions

of symbol x. Initially, T̂ = T . After some insertions, the current T̂ may be axxxbcaxabx.

Notice that ranka(4) = 1 and selecta(3) = 9. We represent T̂ by the text T ′, such that

when the symbols of the original text T are deleted, each deleted symbol is replaced by

a special symbol d (whereas if x is deleted, it is just deleted from T ′). Continuing the
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example, after some deletions of symbols from T , T ′ may be axxxddaxabx. Notice that

ranka(4) = 1 and selecta(3) = 7.

We define an insert vector I such that I[i] = 1 if and only if T ′[i] = x. Similarly, we

define a delete vector D such that D[i] = 1 if and only if T ′[i] = d. We also define a delete

vector Ds for each symbol s such that Ds[i] = 1 if and only if the ith s in the original text T

was deleted. The text T ′ is merely a conceptual text: we refer to it for ease of exposition

but we actually maintain T̂ instead.

To store T̂ , we store T using the StaticRankSelect data structure and store all of the I,

D, Ds bitvectors using the constant time BitIndel structure. Now, we describe T̂ .insert x(i),

T̂ .delete(i), T̂ .rank s(i), and T̂ .select s(i):

T̂ .insertx(i). First, we convert position i in T̂ to its corresponding position i′ in T ′

by computing i′ = D.select0(i). Then we must update our various vectors. We perform

I.insert1(i′) on our insert vector, and D.insert0(i′) on our delete vector.

T̂ .delete(i). First, we convert position i in T̂ to its corresponding position i′ in T ′

by computing i′ = D.select0(i). If i′ is newly-inserted (i.e., I[i′] = 1), then we perform

I.delete(i′) and D.delete(i′) to reverse the insertion process from above. Otherwise, we first

convert position i′ in T ′ to its corresponding position i′′ in T by computing i′′ = I.rank0(i′).

Let s = T.char (i′′). Finally, to delete the symbol, we perform D.flip(i′) and Ds.flip(j),

where j = T.rank s(i
′′).

T̂ .rank s(i). First, we convert position i in T̂ to its corresponding position i′ in T ′ by

computing i′ = D.select0(i). If s = x, return I.rank 1(i
′). Otherwise, we first convert

position i′ in T ′ to its corresponding position i′′ in T by computing i′′ = I.rank0(i′).

Finally, we return Ds.rank0(j), where j = T.rank s(i
′′).

T̂ .selects(i). If s = x, compute j = I.select1(i) and return D.rank0(j). Otherwise, we

compute k = Ds.select0(i) to determine i’s position among the s symbols from T . We
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then compute k′ = T.selects(k) to determine its original position in T . Now the position k ′

from T needs to be mapped to its appropriate location in T̂ . Similar to the first case, we

perform k′′ = I.select0(k′) and return D.rank 0(k′′), which corresponds to the right position

of T̂ .

T̂ .char(i). First, we convert position i in T̂ to its corresponding position i′ in T ′ by

computing i′ = D.select0(i). If I[i′] = 1, return x. Otherwise, we convert position i′ in T ′

to its corresponding position i′′ in T by computing i′′ = I.rank0(i′) and return T.char (i′′).

Space and Time. As can be seen, each of the rank and select operations requires

a constant number of accesses to BitIndel and StaticRankSelect structures, thus taking

O(1) time to perform. The indel operations require O(nε) update time, owing to the

BitIndel data structure. The space required for the above data structures comes from the

StaticRankSelect structure, which requires s(n) = O(n lg |Σ|+o(n lg |Σ|)) bits of space, and

the many BitIndel structures, whose space can be bounded by 3 lg
(n′

n

)
+ 6 lg

(n′

n′′

)
+ o(n′) +

O((n′/nε) lg n′) bits where n′′ is number of deletes. If n′′ and n′ − n are bounded by n1−ε,

then this expression is o(n) bits.

Theorem 20. Let T be a dynamic text of original length n and current length n′, with

characters drawn from an alphabet Σ. Let n′′ be the number of deletions. If the number of

updates is O(n1−ε), we can create a data structure using GMR that takes n lg |Σ|+o(n lg |Σ|)

bits of space and supports rank s(i) and select s(i) in O(1) time and insert x(i) and deletes(i)

in O(nε) time.

5.3.4 onlyX-structure

Let T be the dynamic text that we want to maintain, where symbols of T are drawn from

alphabet Σ. Let n′ be the current length of T , and we assume that n′ = O(n). In this

section, we describe a data structure for maintaining a dynamic array of symbols that

supports rank s and selects queries in O((lgn n′)(t(n) + lg lg n)) time, for any fixed ε with
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0 < ε < 1; here, we assume that the maximum number of symbols in the array is O(n).

Our data structure takes O(n′ lg n) bits; for each update (i.e., insertion or deletion of a

symbol), it can be done in amortized O(nε) time.

We describe how to apply the WBB tree to maintain T while supporting rank s and

selects efficiently, for any s ∈ Σ.2 In particular, we choose ε < 1 and store the symbols

of T in a WBB W with fanout factor b = nδ where δ = ε/2 such that the ith (leftmost)

leaf of W stores T [i]. Each node at level 1 will correspond to a substring of T with O(b)

symbols, and we will maintain a static text dictionary for that substring so that rank s and

selects are computed for that substring in t(n) = O(lg lg |Σ|) time. In each level-` node v`

with ` ≥ 2, we store an array size such that size[i] stores the number of symbols in the

subtree of its ith (leftmost) child. To have fast access to this information at each node, we

build a PS structure to store size. Also, for each symbol s that appears in the subtree of v`,

v` is associated with an s-structure, which consists of three arrays: poss, nums, and ptrs.

The entry poss[i] stores the index of v`’s ith leftmost child whose subtree contains s. The

entry nums[i] stores the number of s in v`’s ith leftmost child whose subtree contains s.

The entry ptrs[i] stores a pointer to the s-structure of v`’s ith leftmost child whose subtree

contains s.

The arrays in each s-structure (sizes, poss, and nums) are stored using a PS data

structure so that we can support O(lg lg n)-time sum and findsum queries in size s or nums,

and O(lg lg n)-time rank and select queries in poss. (These rank and select operations are

analogous to sum and findsum queries, but we refer to them as rank and select for ease of

exposition.) The list ptrs is stored in a simple array.

We also maintain another B-tree B with fanout nδ such that each leaf `s corresponds to

a symbol s that is currently present in the text T . Each leaf stores the number of (nonzero)

2One may think of using a B-tree instead of a WBB-tree. However, in our design, a particular

node in the WBB tree will need to store auxiliary information about every symbol in the subtree

under that node. In the worst case, this auxiliary information will be as big as the size of the

subtree. If we use a B-tree, the cost of updating a particular node cannot bounded by O(nε) time

in the amortized case.
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occurrences of s in T , along with a pointer to its corresponding s-structure in the root

of W . The height of B is O(lgnε |Σ|) = O(1), since we assume |Σ| ≤ n.

Answering char(i). We can answer this query in O(lg lg n) time by maintaining a

B-tree with fanout b = nδ over the text. We call this tree the text B-tree.

Answering ranks(p). Recall that rank s(p) records the number of occurrences of sym-

bol s in T [1..p]. We first query B to determine if s occurs in T . If not, return 0. Otherwise,

we follow the pointer from B to its s-structure. We then perform r.size s.findsum(p) to

determine the child ci of root r from W that contains T [p]. Suppose that T [p] is in the

subtree rooted at the ith child ci of r. Then, rank s consists of two parts: the number of

occurrences m1 = r.nums.sum(j) (with j = r.poss.rank (i − 1)) in the first i − 1 children

of r, and m2, the number of occurrences of s in ci. If r.poss.rank (i) 6= j+1 (ci contains no s

symbols), return m1. Otherwise, we retrieve the s-structure of ci by its pointer r.ptr[j + 1]

and continue counting the remaining occurrences of s before T [p] in the WBB tree W . We

will eventually return m1 + m2.

The above process either (i) stops at some ancestor of the leaf of T [p] whose subtree

does not contain s, in which case we can report the desired rank, or (ii) it stops at the

level-1 node containing T [p], in which case the number of remaining occurrences can be

determined by a rank s query in the static text dictionary in t(n) = O(lg lg |Σ|) time. Since

it takes O(lg lg n) time to check the B-tree B at the beginning, and it takes O(lg lg n) time

to descend each of the O(1) levels in the WBB-tree to count the remaining occurrences,

the total time is O(lg lg n).

Answering selects(j). Recall that select s(j) tells the number of symbols (inclusive)

before the jth occurrence of s in T . We follow a similar procedure to the above procedure

for rank s. We first query B to determine if s occurs at least j times in T . If not, we

return −1. Otherwise, we discover the ith child ci of root r from W that contains the jth

s symbol. We compute i = r.poss.select(r.nums.findsum(j)) to find out ci.
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Then, select s consists of two parts: the number of symbols m1 = r.size .sum(i) in the

first i− 1 children of r, and m2, the number of symbols in ci before the jth s. We retrieve

the s-structure of ci by its pointer r.ptr[r.nums.findsum(j)] and continue counting the

remaining symbols on or before the jth occurrence of s in T . We will eventually return m1+

m2. The above process will stop at the level-1 node containing the jth occurrence of s in T ,

in which case the number of symbols on or before it maintained by this level-1 node can

be determined by a select s query in the static text dictionary in t(n) = O(lg lg |Σ|) time.

With similar time analysis as in rank s, the total time is O(lg lg n).

Updates. We can update the text B-tree in O(nε) time. We use a naive approach to

handle updates due to the insertion or deletion of symbols in T : For each list in the WBB-

tree and for each static text dictionary that is affected, we rebuild it from scratch. In

the case that no split, merge, or merge-then-split operation occurs in the WBB-tree, an

insertion or deletion of s at T [p] will affect the static text dictionary containing T [p], and

two structures in each ancestor node of the leaf containing T [p]: the size array and the s-

structure corresponding to the inserted (deleted) symbol. The update cost is O(nδ lg n) =

O(nε) for the static text dictionary and for each ancestor, so in total it takes O(nε) time.

If a split, merge, or merge-then-split operation occurs at some level-` node v` in the

WBB-tree, we need to rebuild the size array and s-structures for all newly created nodes,

along with updating the size array and s-structures of the parent of v`. In the worst case,

it requires O(n(`+1)ε lg n) time. By the property of WBB trees, the amortized update takes

O(nε) time.

In summary, each update due to an insertion or deletion of symbols in T can be done

in amortized O(nε) time.

Space complexity. The space for the text B-tree is O(n lg |Σ| + n1−ε lg n) bits. The

total space of all O(n1−ε) static text dictionaries can be bounded by s(n) = O(n lg |Σ|) bits.

For the space of the s-structures, it seems like it is O(|Σ|n1−ε lg n) bits at the first

glance, since there are O(n1−ε) nodes in W . This space however is not desirable, since |Σ|
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can be as large as n. In fact, a closer look of our design reveals that each node in W only

maintains s-structures for those s that appears in its subtree. In total, each character of T

contributes to at most O(1) s-structures, thus incurring only O(lg n) bits. The total space

for s structures is thus bounded by O(n lg n) bits.

The space for the B-tree B (maintaining distinct symbols in T ) is O(|Σ| lg n) bits, which

is at most O(n lg n) bits. In summary, the total space of the above dynamic rank-select

structure is O(n lg n) bits.

Summarizing the above discussions, we arrive at the following theorem.

Theorem 21. For a dynamic text T of length at most O(n), we can maintain a data

structure on T using GMR to support rank s, selects, and char O(t(n)+lg lg n) = O(lg lg n)

time, and insertion/deletion of a symbol in amortized O(nε) time. The space of the data

structure is O(n lg n) bits.

5.4 Constant-time onlyX-structure

For the case when |Σ| = O(polylg(n)), we can modify the onlyX structure so as to achieve

O(1) queries. This modification is similar to the one we made for our O(1) BitIndel struc-

ture.

Precisely, let T be the dynamic text we want to maintain, n′ be the length of T (which

is never more than 2n), and δ = ε/2 be a fixed constant. We maintain a WBB tree B for T

to answer the rank s and char query, and a WBB tree Vs for each s ∈ |Σ| to answer the

corresponding select s query. For the WBB tree B, the fanout is b = nδ, so that each level-1

node corresponds to a block of Θ(b) characters of T . These characters are maintained by

the StaticRankSelect structure of [NFMM06]. For each level-` internal node v in the tree

with ` ≥ 2, we define an array size such that size[i] stores the number of characters in the

subtree of its ith child, which is maintained by a PS structure of [HSS03]. We also store

an array count s such that count s[i] stores the number of character s in the subtree of the

ith child.
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With the WBB tree B, rank s(i) can be answered by counting the number of s on or

before the T [i]. This is done by (i) traversing B from root to the level-1 node v contain-

ing T [i] based on the PS structures, and summing up the corresponding count s along the

way, and then (ii) querying the StaticRankSelect structure of v for the remaining counts.

The height of the tree is O(1) and each level can be traversed in O(1) time, rank s(i) is

answered in O(1) time. Similarly, we can use B to answer char (i) query in O(1) time.

For the WBB tree Vs for answer select s query, we use a similar approach as we define

the Constant Time BitIndel structure. The weight is now balanced on count s (the number

of s in the subtree), instead of size (the number of characters in the subtree). Each level-1

node will correspond to Θ(b) s, and depending on the sparsity of these characters, they

will either be stored explicitly (if the position of the last s is at least b lg n characters away

from the position of the first s), or will be considered as a bitvector and stored by a RRR

structure. For the level-` nodes with ` ≥ 2, we define the array count s such that count s[i]

stores the number of s in the subtree of its ith child, which is maintained by a PS structure

of [HSS03]. We also store an array size such that size stores the number of characters in

the subtree of the ith child. With the WBB tree Vs, selects(i) can be answered by counting

the number of characters before the ith s. This is done by (i) traversing Vs from root to

the level-1 node v containing the ith s based on the PS structures, and summing up the

corresponding size along the way, and then (ii) querying the explicit array or the RRR

structure of v to count the remaining characters before the ith s. The height of the tree is

O(1) and each level can be traversed in O(1) time, select s(i) is answered in O(1) time.

The total space of the data structure is bounded by O(|Σ|n lg n) bits. For updating due

to insertion or deletion of a character, it is again performed by a naive approach—rebuild

the affected nodes from scratch. The amortized update time can be easily bounded by

O(b|Σ| lg2 n) = O(nε). And for the working space to perform the updates, observe that

we can fix each node of each WBB tree one by one. Thus, the working space is only

O(b lg n) = O(nε) bits.

Summarizing, we have the following theorem.
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Theorem 22. Suppose that |Σ| = polylg(n). For a dynamic text T of length at most O(n),

we can maintain a data structure on T using the wavelet tree to support rank s, selects, and

char in O(t(n)) = O(1) time, and insertion/deletion of a symbol in amortized O(nε) time.

The space of the data structure is O(|Σ|n lg n) bits, and the working space to perform the

updates at any time is O(nε) bits.

5.4.1 The Final Data Structure

Here we describe our final structure, which supports insertions and deletions of any symbol.

To do this, we maintain two structures: our inX structure on T̂ and the onlyX structure,

where all of the new symbols are actually inserted and maintained. After every O(n1−ε lg n)

update operations, the onlyX structure is merged into the original text T and a new T is

generated. All associated data structures are also rebuilt. Since this construction process

could take at most O(n lg n) time, this cost can be amortized to O(nε) per update. The

StaticRankSelect structure on T takes s(n) = n lg |Σ|+ o(n lg |Σ|) bits of space. With this

frequent rebuilding, all of the other supporting structures take only o(n) bits of space.

We augment the above two structures with a few additional BitIndel structures. In

particular, for each symbol s, we maintain a bitvector Is such that Is[i] = 1 if and only

if the ith occurrence of s is stored in the onlyX structure. With the above structures, we

quickly describe how to support rank s(i) and select s(i).

For rank s(i), we first find j = inX.rank s(i). We then find k = inX.rank x(i) and

return j + onlyX.rank s(k). For select s(i), we first find whether the ith occurrence of c

belongs to the inX structure or the onlyX structure. If Is[i] = 0, this means that the

ith item is one of the original symbols from T ; we query inX.select s(j) in this case, where

j = Is.rank 0(i). Otherwise, we compute j = Is.rank1(i) to translate i into its corresponding

position among new symbols. Then, we compute j ′ = onlyX.select s(j), its location in T̂

and return inX.selectx(j′).

Finally, we show how to maintain Is during updates. For delete(i), compute T̂ [i] = s.

We then perform Is.delete(inX.rank s(i)). For insert s(i), after inserting s in T̂ , we insert it
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into Is by performing Is.insert1(inX.rank s(i)). Let nx be the number of symbols stored in

the onlyX structure. We can bound the space for these new BitIndel data structures using

RRR [RRR02] and Jensen’s inequality by dlg
(n′

nx

)
e + o(n′) = O(n1−ε lg2 n) + o(n) = o(n)

bits of space. Thus, we arrive at the following theorem.

Theorem 23. Given a text T of length n drawn from an alphabet Σ, we create a data

structure using GMR that takes s(n) = n lg |Σ|+o(n lg |Σ|)+o(n) bits of space and supports

rank s(i), select s(i), and char(i) in O(lg lg n+t(n)) = O(lg lg n+lg lg |Σ|) time and insert(i)

and delete(i) updates in O(nε) time.

For the special case when |Σ| = polylg(n), we may now use [NFMM06] as the Stati-

cRankSelect structure, and the Constant Time BitIndel as the BitIndel structure. For the

onlyX structure, we use the one described in Section 5.4, whose space is o(n) if merging is

performed every O(n1−ε) update operations. Then, we achieve the following theorem.

Theorem 24. Given a text T of length n drawn from an alphabet Σ, with |Σ| = polylg(n),

we create a data structure using the wavelet tree that takes s(n)+o(n) = nH0 +o(n lg |Σ|)+

o(n) bits of space and supports rank s(i), select s(i), and char (i) in O(t(n)) = O(1) time

and insert(i) and delete(i) updates in O(nε) time.

We skip the details about the memory allocation issues for our dynamic structures and

rebuilding space issues. However, the overhead for these issues can be shown to be o(n)

bits of additional space.

5.5 Dynamizing Ordinal Trees, Labeled Trees, and

the XBW Transform

In this section, we describe applications of our BitIndel data structure and our dynamic

multi-symbol rank/select data structure to dynamizing ordinal trees, labeled trees, and the

XBW transform [FLMM05].
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Ordinal Trees. An ordinal tree is a rooted tree where the children are ordered and

specified by their rank. An ordinal tree can be represented by the Jacobson’s LOUDS

representation [BDM+05] using just rank and select . Thus, we can use our BitIndel data

structure to represent any ordinal tree with the following operations:

• v.parent (), returns the parent node of v in T ;

• v.child (i), returns the ith child node of v;

• v.insert(k), inserts the kth child of node v;

• v.delete(k), removes the kth child of node v;

Lemma 41. For any ordinal tree T with n nodes, there exists a dynamic representation of

it that takes at most 2n + O(n lg lg n/ lg n) bits of space and supports updates in amortized

O(nε) time and navigational queries in O(lg lg n) time. Alternatively, we can take 6n +

O(n lg lg n/ lg n) bits of space and support navigational queries in just O(1) time.

Labeled Trees, Text Collections, and XBW. A labeled tree T is a tree where

each of the n nodes is associated with a label from alphabet Σ. To ease our notation, we

will also number our symbols from [0, |Σ| − 1] such that the sth symbol is also the sth

lexicographically-ordered one. We’ll call this symbol s. We are interested in constructing

a data structure that supports the following operations in T :

• insert(P ), inserts the path P into T ;

• v.delete(), removes the root-to-v path for a leaf v;

• subpath(P ), finds all occurrences of the path P ;

• v.parent (), returns the parent node of v in T ;

• v.child (i), returns the ith child node of v; and

• v.child (s), returns any child node of v labeled s.

Ferragina et al. [FLMM05] propose an elegant way to solve the static version of this

problem by performing an XBW transform on the tree T , which produces an XBW text S.

They show that storing S is sufficient to support the desired operations on T efficiently,

namely navigational queries in O(lg |Σ|) time and subpath(P ) queries in O(|P | lg |Σ|) time.
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In the dynamic case when we want to support insert or delete of a path of length m, we

observe that either operation corresponds to an update of this XBW text S at m positions.

Using our dynamic framework, we can maintain a dynamic version of this text S and achieve

similar results for the dynamic case.

Before explaining our data structure, we first give a brief description of the XBW

transform [FLMM05]. For a node v in T , let `[v] = 1 if and only if v is the rightmost

child of its parent in T . Let α[v] be the label of v, and π[v] be the string obtained by

concatenating the labels on the upward path from v.parent () to the root of T . We further

assume that the node labels can be separated into two disjoint sets Σi and Σl of labels for

internal nodes and leaves (respectively). We also let ni be the number of internal nodes

of T and n` be the number of leaves of T . We then construct a set S of n triplets, one for

each tree node:

• Visit T in pre-order. For each visited node v add the triplet s[v] = 〈`[v], α[v], π[v]〉

into S;

• Stable-sort S according to the π component of each triple.

The (output of the) XBW transform consists of the arrays S` and Sα, where these refer

to the first and second components of each triplet (respectively) after the stable sort has

been performed. Ferragina, et al show in [NFMM06] that the tree T can be reconstructed by

storing these arrays. The above transform is reminiscent of the Burrows-Wheeler Transform

(BWT) for text documents. Their structure supports navigational queries (parent , child)

operations, as well as a subpath(P ) search, which finds the nodes v such that the reversed

path rev(P ) is a prefix of the concatenated string α[v]π[v]. In summary, they achieve the

following theorem for the static ordered trees T :

Theorem 25 (Static XBW [FLMM05]). For any ordered tree T with node labels drawn

from an alphabet Σ, there exists a static succinct representation of it using the XBW

transform that takes at most nH0(Sα) + 2n + o(n) bits of space, while supporting navi-

gational queries in O(lg |Σ|) time. The representation can also answer a subpath(P ) query

in O(m lg |Σ|) time, where m is the length of path P .
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The full details of the result can be found in [FLMM05]. Here, we briefly recap the

data structures used in their solution. For our result, we will show that replacing these

structures with their dynamic counterpart is sufficient to achieve a powerful facility to

update ordered trees (such as XML trees). For S`, [FLMM05] use an RRR [RRR02] data

structure to maintain the bitvector of length n containing ni 1s in lg
( n
ni

)
+ o(n) bits of

space. For Sα, [FLMM05] keep two data structures: F and Sα. The data structure F keeps

track of the number of occurences of each symbol s in Σ. F is (conceptually) a bitvector of

length n + |Σ| storing |Σ| 1s such that select 1(i)− select1(i− 1)− 1 indicates the number

of occurrences of the ith label s in T . Finally, Sα is stored using a wavelet tree [GGV03].

For our dynamic XBW data structure, we replace the static implementations of S`

and F with our BitIndel data structure, supporting rank and select in O(lg lg n) time and

updates in O(lgn n′ +nε) amortized time. Then, we replace the Sα data structure with our

“final structure” that allows rank s and selects in O(lg lg n) time and supports insertions

and deletions in O(nε) time. We use the same algorithms for parent and child operations

as [FLMM05]. Since these algorithms require a constant number of queries to the above

data structures, we can now support these operations in O(lg lg n) time. For subpath(P ),

we again use the same algorithm, taking O(m lg lg n) time, where m is the length of P .

For insert(P ) and delete(), these operations will be defined on the original tree T

for some node u where we want to begin inserting or deleting. We describe a method

to translate any node u into a corresponding position v such that the triplet S[v] in the

XBW transform [FLMM05] corresponds to node u in T . For a path from root r to a

node u in T , say P = (u0, u1, u2, · · · , uh−1, uh) with u0 = r and uh = u, we describe a

sequence of child indices Cu = c1c2 . . . ch, where ci indicates that ui is the cith child of ui−1.

To translate u into the corresponding position v in the XBW transform [FLMM05], we

perform the following convert operation.
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function convert(Cu) {

v ← 1; // v is the root

for (i = 1; i ≤ h; i++)

v ← v.child (ci);

return v;

}

The above operation takes O(h lg lg n) time to perform with our dynamic data struc-

tures, where h + 1 is the depth of the node to be modified. Our later operations will take

this much additional time. We state the following lemma.

Lemma 42. For any node u at depth h + 1 in tree T , we can find its corresponding

position in the XBW transform [FLMM05] in O(h · t(n)) time, where t(n) is the amount

of time to perform a child (i) navigational operation by a data structure storing the XBW

transform.

We now describe how to support insert(P ) and v.delete() for node v in the XBW

transform [FLMM05]. For convenience, we rewrite P = p1p2 · · · pm as the concatenation

of its m symbols. Furthermore, we assume that node v refers to its position in the XBW

transform (easily done with convert(cv)). For insert(P ), we traverse the path P in the

XBW transform until we encounter a leaf v. We find v’s last child. We then insert the

next symbol in P after this child, making the appropriate changes to S` and Sα. We also

update F so that it maintains the correct count of alphabet symbols. For v.delete(), note

that it’s sufficient to simply know the leaf node l = v of the path we wish to delete. To

execute a deletion, we remove this leaf l and propagate to l’s parent, making the appropriate

changes to F , S`, and Sα. We terminate if l’s parent has more than one child. We show

the pseudo-code below. (We assume we can access the value of any entry stored in the data
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structures by our previous discussion.)

function v.insert(p1p2 · · · pm) {

if (Sα[v] ∈ Σl) return −1;

s← Sα[v];

y ← F.select1(s);

k ← Sα.rank s(v);

z ← S`.rank1(y − 1);

v′ ← S`.select1(z + k);

S`.flip(v′);

S`.insert1(v′ + 1);

Sα.insertp1
(v′ + 1);

F.insert1(F.select1(p1) + 1);

(v′ + 1).insert(p2 · · · pm);

}

function v.delete() { // v has no children

s← Sα[v];

y ← F.select1(s);

k ← S`.rank1(v − 1)− S`.rank 1(y − 1);

p← Sα.selects(k + 1);

F.delete(F.select1(s) + 1);

Sα.delete(v);

if (S`[v] = 0)

S`.delete(v);

exit;

else if (S`[v − 1] = 0)

S`.flip(v − 1);

S`.delete(v);

exit;

if (p < v)

p.delete();

else

(p− 1).delete();

}
The above process can be expanded to also include routines for subtree insertion and

deletion (tinsert , tdelete). Notice that the above algorithms require O(m) queries to our

dynamic data structures to insert or delete a path of length m. Thus, we arrive at the

following theorem using GMR.

Theorem 26 (Dynamic XBW). For any ordered tree T , there exists a dynamic suc-

cinct representation of it using the XBW transform [FLMM05] that takes at most s(n) +

2n = n lg |Σ| + o(n lg |Σ|) + 2n bits of space, while supporting navigational queries in

O(t(n)+ lg lg n) = O(lg lg n) time. The representation can also answer a subpath(P ) query

in O(m(t(n) + lg lg n)) = O(m lg lg n) time, where m is the length of path P . The update
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operations insert(P ) and delete() at node u for this structure take O(nε +m(t(n)+ lg lg n))

amortized time, where m is the length of the path P being inserted or deleted.
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Chapter 6

Conclusions and Future Directions

In this thesis, we have explored the notion of compressing data while retaining its acces-

sibility for important queries in competitive time bounds. From general text indexing to

various instances of dictionary problems, succinct data structures can serve as replacements

for their corresponding non-succinct versions without a significant tradeoff in query per-

formance. In theory, a more ubiquitous use of these data structures seems like a natural

progression. In a practical setting, we have discovered time and again that these succinct

data structures really can make a difference in storing the data. Real-life data rarely ex-

hibits worst-case or random behavior, so our measures and techniques truly do reduce the

data stored.

Our work is just the tip of othe iceberg. By itself, compression can lead to insights in un-

derstanding the underlying structure or information in a large amount of data, possibly even

a data set that contains a lot of “noise”; it can reduce network load [AAG+95, GKKV95],

I/O overhead [Vit01], or save battery power on mobile devices. Compression techniques

can also be used as a tool to predict future trends and behavior [CKV93, KV98]. Paired

with fast query access, we can apply these goals to a wide variety of problems and expand

the power of queries that we consider. To this end, we encourage researchers to develop the-

oretically and practically succinct data structures using a data-aware analysis. We briefly

mention a few possible directions where these themes can be expanded and explored.

IP Lookup Problem. Computer networks are expected to exhibit very high perfor-

mance in delivering data, owing to the explosive growth of Internet nodes. Routers forward

many packets from input to output interfaces, based on the destination address of the

packet. Briefly, forwarding a packet requires an IP address lookup in a routing table to

select the next hop appropriate for the packet. Because of the bottleneck on computation
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time available to the router, this simple IP lookup is practically prohibitive. With such a

realization, early assumptions of the ease of IP lookups have vanished, replaced by the re-

ality that it is inconceivable to store all existing IP addresses explicitly, since routing tables

would contain millions of entries. In terms of our dictionary structures, given a query IP

address (as a string), our task would be to find the item in our dictionary (composed of a

subset of all possible IP addresses) having the longest prefix match with the query address.

The challenge is to develop a sound theoretical structure that is simple enough to provide

blazingly fast practical results, while still retaining space efficiency.

Text Indexing. A basic open problem remains in how to make compressed suffix arrays

(and in general, text indexes) dynamic; another question is whether it is possible for the

csa to be I/O efficient [Vit01]. Many applications appear in Gusfield’s book [Gus97a] that

use suffix arrays, suffix trees, and their variants. For instance, we highlight a few examples

(many relevant to applications in computational biology), such as the space-efficient longest

common substring problem, finding all maximal palindromes in linear time, exact matching

with wildcards, the k-mismatch problem, among others.

Multidimensional Matching. An interesting extension of our text indexing work,

with practical applications related to image matching, is to develop a data structure that

achieves similar space bounds as the 1-D case and the same time bounds as known multi-

dimensional data structures. Multidimensional data present a new challenge when trying

to capture entropy, as now the critical notion of spatial information also enters into play.

(In a strict sense, this information was always present, but we can anticipate more depen-

dence upon spatially linked data.) Stronger notions of compression are applicable, yet the

searches are more complicated. Achieving both, is again, a challenge.

Approximate Matching. Another major series of extensions to our text indexing

work deals with improving the quality of the search functionality provided. The two

major flavors of search functionality are fault-tolerant (approximate) matches and wild-
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card matches. Wild-card matches are a subset of (and thus easier than) approximate

matches. Generally speaking, approximate matching is of a great deal of interest to a

number of communities. Computational biologists want to find “related objects” in their

searches [Gus97a], without being constrained to the strict notion of exactness. Inspecting

audio, video, or image clips for patterns rarely demand exact matches.

There has been a lot of work on approximate matching, especially in the computational

biology community. A comprehensive survey by Navarro [Nav01] provides insights on the

issues involved. While edit distance (LCS measure) is one of the most popular approxi-

mation criteria, many others (like hamming distance, metric distance, etc.[MS00, MS02])

have been considered as well. In spite of considerable progress in approximate pattern

matching, there has been very little positive development on indexed searching for approx-

imate matches. The known index structures for approximate matching tend to take a huge

amount of space, many times the text size. Indexed approximate searching is a difficult

problem and the area is quite new and active. There have been some recent results by

Navarro et al. [MNZBY98, NBY00, NBYST01].
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